Preconditioned iteration for saddle-point systems with bound constraints arising in contact problems
暂无分享,去创建一个
[1] M. Fortin,et al. An efficient hierarchical preconditioner for quadratic discretizations of finite element problems , 2011, Numer. Linear Algebra Appl..
[2] Michel Fortin,et al. Iterative solvers for 3D linear and nonlinear elasticity problems: Displacement and mixed formulations , 2010 .
[3] Daniel Loghin,et al. Discrete Interpolation Norms with Applications , 2009, SIAM J. Numer. Anal..
[4] R. Guenette,et al. Efficient preconditioning techniques for finite‐element quadratic discretization arising from linearized incompressible Navier–Stokes equations , 2009 .
[5] M. Schäfer,et al. A fast and robust iterative solver for nonlinear contact problems using a primal‐dual active set strategy and algebraic multigrid , 2007 .
[6] Mark F. Adams,et al. Algebraic Multigrid Methods for Direct Frequency Response Analyses in Solid Mechanics , 2007 .
[7] R.D. Falgout,et al. An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.
[8] Yvan Notay,et al. Aggregation-Based Algebraic Multilevel Preconditioning , 2005, SIAM J. Matrix Anal. Appl..
[9] Barbara Wohlmuth,et al. A primal–dual active set strategy for non-linear multibody contact problems , 2005 .
[10] Yvan Notay,et al. Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..
[11] Pierre Alart,et al. Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials , 2005 .
[12] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[13] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[14] David Horák,et al. Scalability and FETI based algorithm for large discretized variational inequalities , 2003, Math. Comput. Simul..
[15] Asen Asenov,et al. Excessive Over-Relaxation Method for Multigrid Poisson Solvers , 2002 .
[16] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[17] R. Kornhuber,et al. Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .
[18] Cornelis Vuik,et al. A parallel block-preconditioned GCR method for incompressible flow problems , 2001, Future Gener. Comput. Syst..
[19] D. Rixen,et al. FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .
[20] Rolf Krause,et al. Monotone Multigrid Methods for Signorini's Problem with Friction , 2001 .
[21] Z. Dostál,et al. Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .
[22] Mark F. Adams,et al. Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics , 2000 .
[23] R. Fletcher,et al. Practical Methods of Optimization: Fletcher/Practical Methods of Optimization , 2000 .
[24] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[25] Patrick R. Amestoy,et al. Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .
[26] Axel Klawonn,et al. Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..
[27] Zdeněk Dostál,et al. Solution of Coercive and Semicoercive Contact Problems by FETI Domain Decomposition , 1998 .
[28] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[29] Jinchao Xu,et al. Preconditioning the Poincaré-Steklov operator by using Green's function , 1997, Math. Comput..
[30] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[31] C. Vuik. New insights in GMRES-like methods with variable preconditioners , 1995 .
[32] G. Schmidt. Boundary element discretization of Poincar\'e--Steklov operators , 1994 .
[33] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..
[34] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[35] William Gropp,et al. Newton-Krylov-Schwarz Methods in CFD , 1994 .
[36] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[37] R. Fletcher. Practical Methods of Optimization , 1988 .
[38] D. Trystram,et al. A Conjugate projected gradient method with preconditioning for unilateral contact problems , 1988 .
[39] M. Delfour,et al. Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .
[40] H.-O. May,et al. The conjugate gradient method for unilateral problems , 1986 .
[41] Anil Chaudhary,et al. A SOLUTION METHOD FOR PLANAR AND AXISYMMETRIC CONTACT PROBLEMS , 1985 .
[42] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[43] B. Torstenfelt,et al. Contact problems with friction in general purpose finite element computer programs , 1983 .
[44] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[45] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[46] Nguyen Dang Hung,et al. Frictionless contact of elastic bodies by finite element method and mathematical programming technique , 1980 .