Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map

We present an efficient procedure for computing resonances and resonant modes of Helmholtz problems posed in exterior domains. The problem is formulated as a nonlinear eigenvalue problem (NEP), where the nonlinearity arises from the use of a Dirichlet-to-Neumann map, which accounts for modeling unbounded domains. We consider a variational formulation and show that the spectrum consists of isolated eigenvalues of finite multiplicity that only can accumulate at infinity. The proposed method is based on a high order finite element discretization combined with a specialization of the Tensor Infinite Arnoldi method. Using Toeplitz matrices, we show how to specialize this method to our specific structure. In particular we introduce a pole cancellation technique in order to increase the radius of convergence for computation of eigenvalues that lie close to the poles of the matrix-valued function. The solution scheme can be applied to multiple resonators with a varying refractive index that is not necessarily piecewise constant. We present two test cases to show stability, performance and numerical accuracy of the method. In particular the use of a high order finite element discretization together with TIAR results in an efficient and reliable method to compute resonances.

[1]  Wim Michiels,et al.  NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[2]  James C. Sutherland,et al.  Graph-Based Software Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software , 2011, TOMS.

[3]  Avner Friedman,et al.  Nonlinear eigenvalue problems , 1968 .

[4]  Marc Van Barel,et al.  Nonlinear eigenvalue problems and contour integrals , 2016, J. Comput. Appl. Math..

[5]  Thomas J. R. Hughes,et al.  Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .

[6]  Otto Karma,et al.  Approximation in eigenvalue problems for holomorphic fredholm operator functions Ii (Convergence Rate) , 1996 .

[7]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[8]  Christophe Hazard,et al.  Variational formulations for the determination of resonant states in scattering problems , 1992 .

[9]  Adi Ben-Israel,et al.  The Newton and Halley Methods for Complex Roots , 1998 .

[10]  Wim Michiels,et al.  A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[11]  Fei Xue,et al.  Preconditioned Eigensolvers for Large-Scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. II. Interior Eigenvalues , 2015, SIAM J. Sci. Comput..

[12]  Tetsuya Sakurai,et al.  A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method , 2008, J. Comput. Appl. Math..

[13]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[14]  Stefan A. Sauter,et al.  hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p , 2010, SIAM J. Numer. Anal..

[15]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[16]  W. Beyn An integral method for solving nonlinear eigenvalue problems , 2012 .

[17]  N. Higham Functions Of Matrices , 2008 .

[18]  C. Dettmann,et al.  Internal and external resonances of dielectric disks , 2009, 0903.4718.

[19]  LINDA KAUFMAN Eigenvalue Problems in Fiber Optic Design , 2006, SIAM J. Matrix Anal. Appl..

[20]  David Wells,et al.  The deal.II Library, Version 8.4 , 2016, J. Num. Math..

[21]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[22]  W. Barnes,et al.  Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers , 2016 .

[23]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[24]  K. Schmidt,et al.  Dirichlet-to-Neumann Transparent Boundary Conditions for Photonic Crystal Waveguides , 2014, IEEE Transactions on Magnetics.

[25]  Stefano Giani,et al.  Efficient and reliable hp-FEM estimates for quadratic eigenvalue problems and photonic crystal applications , 2016, Comput. Math. Appl..

[26]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[27]  I. Babuska,et al.  Regularity and numerical solution of eigenvalue problems with piecewise analytic data , 1989 .

[28]  C. Engström,et al.  A Subspace Iteration Algorithm for Fredholm Valued Functions , 2015 .

[29]  Ivo Babuška,et al.  The h, p and h-p version of the finite element method: basis theory and applications , 1992 .

[30]  Melrose,et al.  Geometric Scattering Theory , 1995 .

[31]  A. Matsko,et al.  Optical resonators with whispering-gallery modes-part II: applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[33]  Wim Michiels,et al.  A linear eigenvalue algorithm for the nonlinear eigenvalue problem , 2012, Numerische Mathematik.

[34]  Sonia Fliss,et al.  A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides , 2012, SIAM J. Sci. Comput..

[35]  Otto Karma,et al.  Approximation in eigenvalue problems for holomorphic fredholm operator functions I , 1996 .

[36]  Ivo Babuška,et al.  The p -version of the finite element method for the elliptic boundary value problems with interfaces , 1992 .

[37]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[38]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[39]  Olof Runborg,et al.  The Waveguide Eigenvalue Problem and the Tensor Infinite Arnoldi Method , 2015, SIAM J. Sci. Comput..

[40]  Alastair Spence,et al.  Photonic band structure calculations using nonlinear eigenvalue techniques , 2005 .

[41]  Z. Bai,et al.  NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD FOR SOLVING LARGE SCALE NONLINEAR EIGENVALUE PROBLEMS , 2010 .

[42]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[43]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[44]  N. Mortensen,et al.  A generalized non-local optical response theory for plasmonic nanostructures , 2014, Nature Communications.

[45]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[46]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[47]  Asymmetric and connected graphene dimers for a tunable plasmonic response , 2015 .

[48]  Roel Van Beeumen,et al.  Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2013 .

[49]  Zhaojun Bai,et al.  Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design , 2006 .

[50]  Johannes Tausch,et al.  Computing Floquet-Bloch modes in biperiodic slabs with boundary elements , 2013, J. Comput. Appl. Math..

[51]  Heinrich Voss,et al.  Nonlinear Eigenvalue Problems , 2012 .

[52]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[53]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..