Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water

[1]  Bruce E. Logan,et al.  Low Energy Desalination Using Battery Electrode Deionization , 2017 .

[2]  T. A. Hatton,et al.  Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design. , 2017, Physical chemistry chemical physics : PCCP.

[3]  C. Santhosh,et al.  Magnetic SiO[2]@CoFe[2]O[4] nanoparticles decorated on graphene oxide as efficient adsorbents for the removal of anionic pollutants from water , 2017 .

[4]  T. A. Hatton,et al.  Redox-electrodes for selective electrochemical separations. , 2017, Advances in colloid and interface science.

[5]  Timothy F. Jamison,et al.  Asymmetric Faradaic systems for selective electrochemical separations , 2017 .

[6]  Silvia Ahualli,et al.  Use of Soft Electrodes in Capacitive Deionization of Solutions. , 2017, Environmental science & technology.

[7]  J. Sawai,et al.  Changes in aquatic toxicity of potassium dichromate as a function of water quality parameters. , 2017, Chemosphere.

[8]  M. Bazant,et al.  Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams , 2017 .

[9]  Timothy F. Jamison,et al.  Anion‐Selective Redox Electrodes: Electrochemically Mediated Separation with Heterogeneous Organometallic Interfaces , 2016 .

[10]  William R. Dichtel,et al.  Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer , 2015, Nature.

[11]  A. Kushima,et al.  Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery. , 2015, Nano letters.

[12]  Volker Presser,et al.  Water desalination via capacitive deionization : What is it and what can we expect from it? , 2015 .

[13]  Yong Liu,et al.  Review on carbon-based composite materials for capacitive deionization , 2015 .

[14]  Choonsoo Kim,et al.  Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques , 2014 .

[15]  Xiaofeng Qian,et al.  In situ observation of random solid solution zone in LiFePO₄ electrode. , 2014, Nano letters.

[16]  Kendra Letchworth-Weaver,et al.  Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. , 2013, The Journal of chemical physics.

[17]  T. A. Hatton,et al.  Polyvinylferrocene for noncovalent dispersion and redox-controlled precipitation of carbon nanotubes in nonaqueous media. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[18]  Richard G. Hennig,et al.  Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper , 2013 .

[19]  S. K. Agarwal,et al.  Groundwater Contaminated with Hexavalent Chromium [Cr (VI)]: A Health Survey and Clinical Examination of Community Inhabitants (Kanpur, India) , 2012, PloS one.

[20]  P. M. Biesheuvel,et al.  Energy consumption and constant current operation in membrane capacitive deionization , 2012 .

[21]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[22]  X. Font,et al.  Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. , 2010, Journal of hazardous materials.

[23]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[24]  Emma L. Smith,et al.  Use of neutron reflectivity to measure the dynamics of solvation and structural changes in polyvinylferrocene films during electrochemically controlled redox cycling. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[25]  T. Langrish,et al.  Adsorption of Chromium(VI) from Aqueous Solutions Using Cross-Linked Magnetic Chitosan Beads , 2009 .

[26]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  S. Kanel,et al.  Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. , 2007, Environmental science & technology.

[28]  D. Stamatialis,et al.  Electrochemical reduction of dilute chromate solutions on carbon felt electrodes , 2006 .

[29]  Guohua Chen,et al.  Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. , 2005, Water research.

[30]  C. Rajagopal,et al.  Removal of Chromium from Aqueous Solutions by Treatment with Carbon Aerogel Electrodes Using Response Surface Methodology , 2005 .

[31]  Paul Ih-Fei Liu,et al.  Energy, Technology, And The Environment , 2004 .

[32]  Lars Jarup,et al.  Hazards of heavy metal contamination. , 2003 .

[33]  Janet G Hering,et al.  Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. , 2003, Environmental science & technology.

[34]  Kazuo T. Suzuki,et al.  Arsenic round the world: a review. , 2002, Talanta.

[35]  S. Moon,et al.  Removal of chromium from water and wastewater by ion exchange resins. , 2001, Journal of hazardous materials.

[36]  K. Takeshita,et al.  Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. , 2001, Water research.

[37]  A. Hillman,et al.  Counter-ion specific effects on charge and solvent trapping in poly(vinylferrocene) films , 2000 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  A. Hillman,et al.  Film mass and volume changes accompanying redox-driven solvent and salt transfer during redox switching of polyvinylferrocene films , 1998 .

[40]  A. Hillman,et al.  Time-resolved mono-anion, di-anion, and solvent transfers into a poly(vinylferrocene)-modified electrode , 1998 .

[41]  S. Fendorf,et al.  Reduction of Hexavalent Chromium by Amorphous Iron Sulfide , 1997 .

[42]  J. Farmer,et al.  Electrosorption of Chromium Ions on Carbon Aerogel Electrodes as a Means of Remediating Ground Water , 1997 .

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  Guangchao Li,et al.  Kinetics of chromate reduction by ferrous iron , 1996 .

[45]  N. Oyama,et al.  Investigation of ion and solvent transport accompanying redox reactions of polyvinylferrocene films using an in situ electrochemical quartz crystal microbalance technique , 1991 .

[46]  Allen J. Bard,et al.  Polymer Films on Electrodes XVI . In Situ Ellipsometric Measurements of Polybipyrazine, Polyaniline, and Polyvinylferrocene Films , 1985 .

[47]  R. Murray,et al.  The effect of composition of a ferrocene-containing redox polymer on the electrochemistry of its thin film coatings on electrodes , 1983 .

[48]  E. Yuliwati,et al.  A Review , 2019, Current Trends and Future Developments on (Bio-) Membranes.