RGD Peptide–Conjugated Multimodal NaGdF4:Yb3+/Er3+ Nanophosphors for Upconversion Luminescence, MR, and PET Imaging of Tumor Angiogenesis

Multimodal nanoparticles have been extensively studied for target-specific imaging and therapy of various diseases, including cancer. In this study, radiolabeled arginine-glycine-aspartic acid (RGD)–functionalized Er3+/Yb3+ co-doped NaGdF4 upconversion nanophosphors (UCNPs) were synthesized and evaluated as a multimodal PET/MR/optical probe with tumor angiogenesis–specific targeting properties. Methods: A dimeric cyclic RGDyk ((cRGDyk)2) peptide was conjugated to polyacrylic acid–coated NaGdF4:Yb3+/Er3+ UCNPs along with polyethylene glycol molecules and was consecutively radiolabeled with 124I. In vitro cytotoxicity testing was performed for 3 d. Upconversion luminescence imaging of (cRGDyk)2-UCNP was performed on U87MG cells with a laboratory-made confocal microscope. In vivo small-animal PET and clinical 3-T T1-weighted MR imaging of 124I-labeled RGD–functionalized UCNPs was acquired with or without blocking of cyclic RGD peptide in a U87MG tumor model. Inductively coupled plasma mass spectrometry and biologic transmission electron microscopy were done to evaluate gadolinium concentration and UCNP localization, respectively. Results: Polymer-coated UCNPs and dimeric RGD–conjugated UCNPs were monodispersely synthesized, and those of hydrodynamic size were 30 ± 8 nm and 32 ± 9 nm, respectively. (cRGDyk)2-UCNPs have a low cytotoxic effect on cells. Upconversion luminescence signals of (cRGDyk)2-UCNP were specifically localized on the surface of U87MG cells. 124I-c(RGDyk)2-UCNPs specifically accumulated in U87MG tumors (2.8 ± 0.8 vs. 1.3 ± 0.4 percentage injected dose per gram in the blocking experiment), and T1-weighted MR images showed significant positive contrast enhancement in U87MG tumors. Tumor localization of 124I-c(RGDyk)2-UCNPs was confirmed by inductively coupled plasma mass spectrometry and biologic transmission electron microscopy analysis. Conclusion: These results suggest that 124I-labeled RGD–functionalized UCNPs have high specificity for αvβ3 integrin–expressing U87MG tumor cells and xenografted tumor models. Multimodal UCNPs can be used as a platform nanoparticle with multimodal imaging for cancer-specific diagnoses.

[1]  Arne N. Akbar,et al.  RGD peptides induce apoptosis by direct caspase-3 activation , 1999, Nature.

[2]  Taeghwan Hyeon,et al.  Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent , 2009 .

[3]  John-Christopher Boyer,et al.  Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. , 2006, Nano letters.

[4]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[5]  Dong Soo Lee,et al.  Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. , 2011, Small.

[6]  G. Cheon,et al.  Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET , 2008 .

[7]  Jung Ho Yoo,et al.  Facile Synthesis of Ultrasmall and Hexagonal NaGdF4: Yb3+, Er3+ Nanoparticles with Magnetic and Upconversion Imaging Properties , 2010 .

[8]  Clara L Santos-Cuevas,et al.  Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor α(v)β(3) expression. , 2011, Bioconjugate chemistry.

[9]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[10]  Jinwoo Cheon,et al.  A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. , 2008, Angewandte Chemie.

[11]  Ya-Wen Zhang,et al.  Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals , 2007 .

[12]  Angelique Louie,et al.  Multimodality imaging probes: design and challenges. , 2010, Chemical reviews.

[13]  Chenjie Xu,et al.  PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles , 2008, Journal of Nuclear Medicine.

[14]  Srikanth K. Iyer,et al.  Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. , 2011, The Journal of clinical investigation.

[15]  Kai Yang,et al.  Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles , 2010 .

[16]  F. Bestvater,et al.  Two-photon spectral imaging with high temporal and spectral resolution. , 2010, Optics express.

[17]  W. Cai,et al.  64Cu-Labeled Tetrameric and Octameric RGD Peptides for Small-Animal PET of Tumor αvβ3 Integrin Expression , 2007, Journal of Nuclear Medicine.

[18]  Zhengquan Li,et al.  Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity , 2010, Nanotechnology.

[19]  Ande Bao,et al.  In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. , 2010, International journal of pharmaceutics.

[20]  Ququan Wang,et al.  Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. , 2010, Biomaterials.

[21]  Armin Kolb,et al.  Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? , 2008, Seminars in nuclear medicine.

[22]  Christopher G. Morgan,et al.  The Active‐Core/Active‐Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide‐Doped Nanoparticles , 2009 .

[23]  Zhuang Liu,et al.  Multicolor In Vivo Imaging of Upconversion Nanoparticles with Emissions Tuned by Luminescence Resonance Energy Transfer , 2011 .

[24]  Xiaogang Liu,et al.  Recent Advances in the Chemistry of Lanthanide‐Doped Upconversion Nanocrystals , 2009 .

[25]  Kazunori Kataoka,et al.  PEGylated nanoparticles for biological and pharmaceutical applications. , 2003, Advanced drug delivery reviews.

[26]  Yun Sun,et al.  Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. , 2011, Biomaterials.

[27]  Q. Pankhurst,et al.  Imaging applications of nanotechnology in cancer , 2009, Targeted Oncology.

[28]  G. Chow,et al.  Synthesis of Hexagonal‐Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up‐Conversion Fluorescence , 2006 .

[29]  Hao Hong,et al.  cRGD-functionalized, DOX-conjugated, and ⁶⁴Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. , 2011, Biomaterials.