Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings
暂无分享,去创建一个
[1] Igor Pak,et al. Kirszbraun-type theorems for graphs , 2017, J. Comb. Theory B.
[2] E. Weisstein. Barnes G-Function , 2000 .
[3] Greta Panova,et al. Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.
[4] G. Menz,et al. A variational principle for a non-integrable model , 2016, Probability Theory and Related Fields.
[5] A. Gordenko. Limit shapes of large skew Young tableaux and a modification of the TASEP process , 2020, 2009.10480.
[6] D. Romik. The Surprising Mathematics of Longest Increasing Subsequences , 2015 .
[7] W. Thurston. The geometry and topology of three-manifolds , 1979 .
[8] S. Okada,et al. Skew hook formula for $d$-complete posets , 2018, 1802.09748.
[9] B. Virág,et al. Random sorting networks , 2006, math/0609538.
[10] E. Dimitrov,et al. Log-gases on quadratic lattices via discrete loop equations and q-boxed plane partitions , 2017, Journal of Functional Analysis.
[11] Matjaž Konvalinka. A bijective proof of the hook-length formula for skew shapes , 2020, Eur. J. Comb..
[12] Richard Kenyon,et al. Lectures on Dimers , 2009, 0910.3129.
[13] J. Propp,et al. Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.
[14] Greta Panova,et al. Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications , 2016, SIAM J. Discret. Math..
[15] Yuval Roichman,et al. Standard Young Tableaux , 2015 .
[16] W. Feit. The degree formula for the skew-representations of the symmetric group , 1953 .
[17] The Archimedean limit of random sorting networks , 2018, 1802.08934.
[18] Piotr Sniady,et al. Asymptotics of characters of symmetric groups related to Stanley character formula , 2011 .
[19] S. Okada,et al. Skew hook formula for $d$-complete posets via equivariant $K$-theory , 2019, Algebraic Combinatorics.
[20] Michelle L. Wachs,et al. Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.
[21] D. Betea. Elliptic Combinatorics and Markov Processes , 2012 .
[22] Randolph B. Tarrier,et al. Groups , 1973, Algebra.
[23] Dan Romik,et al. Limit shapes for random square Young tableaux , 2007, Adv. Appl. Math..
[24] A. Morales,et al. On the Okounkov-Olshanski formula for standard tableaux of skew shapes. , 2020, 2007.05006.
[25] Igor Pak,et al. Fast Domino Tileability , 2016, Discret. Comput. Geom..
[26] Alexei Borodin,et al. q-Distributions on boxed plane partitions , 2009, 0905.0679.
[27] Valentin Féray,et al. Asymptotics for skew standard Young tableaux via bounds for characters , 2017, Proceedings of the American Mathematical Society.
[28] Greta Panova,et al. Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.
[29] Greta Panova,et al. Asymptotics of the number of standard Young tableaux of skew shape , 2016, Eur. J. Comb..
[30] W. Sun. DIMER MODEL, BEAD MODEL AND STANDARD YOUNG TABLEAUX: FINITE CASES AND LIMIT SHAPES , 2017, 1804.03414.
[31] Igor Pak,et al. Complexity problems in enumerative combinatorics , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).
[32] Sakinah,et al. Vol. , 2020, New Medit.
[33] J. Propp,et al. A variational principle for domino tilings , 2000, math/0008220.