Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings

<jats:p>We prove and generalise a conjecture in [MPP4] about the asymptotics of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548321000468_inline1.png" /> <jats:tex-math> $\frac{1}{\sqrt{n!}} f^{\lambda/\mu}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548321000468_inline2.png" /> <jats:tex-math> $f^{\lambda/\mu}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the number of standard Young tableaux of skew shape <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548321000468_inline3.png" /> <jats:tex-math> $\lambda/\mu$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> which have stable limit shape under the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548321000468_inline4.png" /> <jats:tex-math> $1/\sqrt{n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.</jats:p>

[1]  Igor Pak,et al.  Kirszbraun-type theorems for graphs , 2017, J. Comb. Theory B.

[2]  E. Weisstein Barnes G-Function , 2000 .

[3]  Greta Panova,et al.  Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.

[4]  G. Menz,et al.  A variational principle for a non-integrable model , 2016, Probability Theory and Related Fields.

[5]  A. Gordenko Limit shapes of large skew Young tableaux and a modification of the TASEP process , 2020, 2009.10480.

[6]  D. Romik The Surprising Mathematics of Longest Increasing Subsequences , 2015 .

[7]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[8]  S. Okada,et al.  Skew hook formula for $d$-complete posets , 2018, 1802.09748.

[9]  B. Virág,et al.  Random sorting networks , 2006, math/0609538.

[10]  E. Dimitrov,et al.  Log-gases on quadratic lattices via discrete loop equations and q-boxed plane partitions , 2017, Journal of Functional Analysis.

[11]  Matjaž Konvalinka A bijective proof of the hook-length formula for skew shapes , 2020, Eur. J. Comb..

[12]  Richard Kenyon,et al.  Lectures on Dimers , 2009, 0910.3129.

[13]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[14]  Greta Panova,et al.  Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications , 2016, SIAM J. Discret. Math..

[15]  Yuval Roichman,et al.  Standard Young Tableaux , 2015 .

[16]  W. Feit The degree formula for the skew-representations of the symmetric group , 1953 .

[17]  The Archimedean limit of random sorting networks , 2018, 1802.08934.

[18]  Piotr Sniady,et al.  Asymptotics of characters of symmetric groups related to Stanley character formula , 2011 .

[19]  S. Okada,et al.  Skew hook formula for $d$-complete posets via equivariant $K$-theory , 2019, Algebraic Combinatorics.

[20]  Michelle L. Wachs,et al.  Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.

[21]  D. Betea Elliptic Combinatorics and Markov Processes , 2012 .

[22]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[23]  Dan Romik,et al.  Limit shapes for random square Young tableaux , 2007, Adv. Appl. Math..

[24]  A. Morales,et al.  On the Okounkov-Olshanski formula for standard tableaux of skew shapes. , 2020, 2007.05006.

[25]  Igor Pak,et al.  Fast Domino Tileability , 2016, Discret. Comput. Geom..

[26]  Alexei Borodin,et al.  q-Distributions on boxed plane partitions , 2009, 0905.0679.

[27]  Valentin Féray,et al.  Asymptotics for skew standard Young tableaux via bounds for characters , 2017, Proceedings of the American Mathematical Society.

[28]  Greta Panova,et al.  Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.

[29]  Greta Panova,et al.  Asymptotics of the number of standard Young tableaux of skew shape , 2016, Eur. J. Comb..

[30]  W. Sun DIMER MODEL, BEAD MODEL AND STANDARD YOUNG TABLEAUX: FINITE CASES AND LIMIT SHAPES , 2017, 1804.03414.

[31]  Igor Pak,et al.  Complexity problems in enumerative combinatorics , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[32]  Sakinah,et al.  Vol. , 2020, New Medit.

[33]  J. Propp,et al.  A variational principle for domino tilings , 2000, math/0008220.