Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey.

[1]  Baltazar Becerril,et al.  The Dual α-Amidation System in Scorpion Venom Glands , 2019, Toxins.

[2]  V. Cardoso,et al.  Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution , 2019, PLoS neglected tropical diseases.

[3]  J. Tytgat,et al.  Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. , 2019, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[4]  K. Sunagar,et al.  Arthropod venoms: Biochemistry, ecology and evolution , 2019, Toxicon : official journal of the International Society on Toxinology.

[5]  P. Roepstorff,et al.  Biochemical and structural characterization of a protein complex containing a hyaluronidase and a CRISP-like protein isolated from the venom of the spider Acanthoscurria natalensis. , 2019, Journal of proteomics.

[6]  R. Jenner,et al.  Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System , 2019, Toxins.

[7]  D. Rokyta,et al.  Venom‐gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family , 2018, Toxicon : official journal of the International Society on Toxinology.

[8]  M. Palma,et al.  Profiling the short, linear, non-disulfide bond-containing peptidome from the venom of the scorpion Tityus obscurus. , 2018, Journal of proteomics.

[9]  R. Pinto‐da‐Rocha,et al.  Plucking with the plectrum: phylogeny of the New World buthid scorpion subfamily Centruroidinae Kraus, 1955 (Scorpiones: Buthidae) reveals evolution of three pecten-sternite stridulation organs , 2018, Arthropod Systematics & Phylogeny.

[10]  Roberto J. Miranda,et al.  Venoms of Centruroides and Tityus species from Panama and their main toxic fractions , 2018, Toxicon : official journal of the International Society on Toxinology.

[11]  W. Lourenço The evolution and distribution of noxious species of scorpions (Arachnida: Scorpiones) , 2018, Journal of Venomous Animals and Toxins including Tropical Diseases.

[12]  I. Vetter,et al.  Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology , 2017, Toxins.

[13]  M. Heller,et al.  Identification of a precursor processing protease from the spider Cupiennius salei essential for venom neurotoxin maturation , 2017, The Journal of Biological Chemistry.

[14]  L. Mathieu,et al.  Enzymatic and Pro-Inflammatory Activities of Bothrops lanceolatus Venom: Relevance for Envenomation , 2017, Toxins.

[15]  J. Daduang,et al.  Comparative proteomic analysis of two wasps venom, Vespa tropica and Vespa affinis. , 2016, Toxicon : official journal of the International Society on Toxinology.

[16]  Aarón Gómez,et al.  Scorpions maintenance in captivity for venom extraction purposes in Costa Rica. , 2016, Revista de biologia tropical.

[17]  L. Possani,et al.  Scorpine-like peptides , 2016 .

[18]  B. Lomonte,et al.  Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. , 2016, Journal of proteomics.

[19]  E. Hutchinson,et al.  Anatomy and morphology , 2016 .

[20]  L. Possani,et al.  Scorpions from Mexico: From Species Diversity to Venom Complexity , 2015, Toxins.

[21]  Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins , 2015, Biochemistry (Moscow).

[22]  E. Arantes,et al.  Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology , 2015, Journal of Venomous Animals and Toxins including Tropical Diseases.

[23]  R. Miranda,et al.  Presas de escorpiones (Arachnida: Scorpiones) de Panamá con observaciones sobre el comportamiento de depredación , 2015 .

[24]  C. Kushmerick,et al.  Cm38: a new antimicrobial peptide active against Klebsiella pneumoniae is homologous to Cn11. , 2015, Protein and peptide letters.

[25]  E. Kalapothakis,et al.  Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. , 2014, Toxicon : official journal of the International Society on Toxinology.

[26]  J. Gutiérrez,et al.  Role of enzymatic activity in muscle damage and cytotoxicity induced by Bothrops asper Asp49 phospholipase A2 myotoxins: are there additional effector mechanisms involved? , 2014, PeerJ.

[27]  Walter Murillo Arango,et al.  Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia , 2014, Toxins.

[28]  Mehdi Mobli,et al.  A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a , 2014, Nature Communications.

[29]  E. Arantes,et al.  Functional and structural study comparing the C-terminal amidated β-neurotoxin Ts1 with its isoform Ts1-G isolated from Tityus serrulatus venom. , 2014, Toxicon : official journal of the International Society on Toxinology.

[30]  L. Felicori,et al.  Molecular, Immunological, and Biological Characterization of Tityus serrulatus Venom Hyaluronidase: New Insights into Its Role in Envenomation , 2014, PLoS neglected tropical diseases.

[31]  A. Antunes,et al.  Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds , 2013, Toxins.

[32]  Pedro Sousa,et al.  Choose Your Weapon: Defensive Behavior Is Associated with Morphology and Performance in Scorpions , 2013, PloS one.

[33]  M. Yandell,et al.  Characterization of the peptidylglycine α-amidating monooxygenase (PAM) from the venom ducts of neogastropods, Conus bullatus and Conus geographus. , 2013, Toxicon : official journal of the International Society on Toxinology.

[34]  L. Possani,et al.  Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects. , 2013, Frontiers in bioscience.

[35]  J. Chippaux Emerging options for the management of scorpion stings , 2012, Drug design, development and therapy.

[36]  Lingling Chen,et al.  Purification and Characterization of Two New Allergens from the Venom of Vespa magnifica , 2012, PloS one.

[37]  Caroline F. B. Mourão,et al.  Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins , 2012, PloS one.

[38]  L. F. Armas,et al.  COMPOSICIÓN DEL GÉNERO CENTRUROIDES MARX, 1890 (SCORPIONES: BUTHIDAE) EN COLOMBIA, CON LA DESCRIPCIÓN DE UNA NUEVA ESPECIE , 2012 .

[39]  F. Kovařík,et al.  On Centruroides margaritatus (Gervais, 1841) and closely related species (Scorpiones: Buthidae) , 2011 .

[40]  K. Girish,et al.  Daboia russelli venom hyaluronidase: purification, characterization and inhibition by β-3-(3-hydroxy-4-oxopyridyl) α-amino-propionic Acid. , 2011, Current topics in medicinal chemistry.

[41]  G. King,et al.  Spider-Venom Peptides as Therapeutics , 2010, Toxins.

[42]  J. Tytgat,et al.  Isolation and characterization of two novel scorpion toxins: The alpha-toxin-like CeII8, specific for Na(v)1.7 channels and the classical anti-mammalian CeII9, specific for Na(v)1.4 channels. , 2010, Toxicon : official journal of the International Society on Toxinology.

[43]  M. H. Borges,et al.  Tityus serrulatus venom peptidomics: assessing venom peptide diversity. , 2008, Toxicon : official journal of the International Society on Toxinology.

[44]  G. King,et al.  Peptide toxins that selectively target insect NaV and CaV channels , 2008, Channels.

[45]  L. F. Armas,et al.  El género "Centruroides" Marx, 1890 (Scorpiones: Buthidae) en el estado de Veracruz, México , 2008 .

[46]  K. Girish,et al.  Inhibition of Naja naja venom hyaluronidase: role in the management of poisonous bite. , 2006, Life sciences.

[47]  K. Girish,et al.  Snake venom hyaluronidase: a therapeutic target , 2006, Cell biochemistry and function.

[48]  A. Borges,et al.  Pancreatic toxicity in mice elicited by Tityus zulianus and Tityus discrepans scorpion venoms. , 2004, Investigacion clinica.

[49]  W. Nentwig,et al.  Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). , 2004, Toxicon : official journal of the International Society on Toxinology.

[50]  N. Schenker,et al.  Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? , 2003, Journal of insect science.

[51]  M. Palma,et al.  Insects as biological models to assay spider and scorpion venom toxicity , 2003 .

[52]  J. Fox,et al.  Scorpion toxins from Tityus cambridgei that affect Na(+)-channels. , 2002, Toxicon : official journal of the International Society on Toxinology.

[53]  H. Aréchigá,et al.  Cn11, the first example of a scorpion toxin that is a true blocker of Na(+) currents in crayfish neurons. , 2002, The Journal of experimental biology.

[54]  H. Rochat,et al.  Purification, amino-acid sequence and partial characterization of two toxins with anti-insect activity from the venom of the South American scorpion Tityus bahiensis (Buthidae). , 2001, Toxicon : official journal of the International Society on Toxinology.

[55]  J. Trent,et al.  Solution structure of a beta-neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. , 1998, Biochemical and biophysical research communications.

[56]  J. Gutiérrez,et al.  Blister formation and skin damage induced by BaP1, a haemorrhagic metalloproteinase from the venom of the snake Bothrops asper. , 1998, International journal of experimental pathology.

[57]  C. Sevcik,et al.  Presence of curarizing polypeptides and a pancreatitis-inducing fraction without muscarinic effects in the venom of the Venezuelan scorpion Tityus discrepans (Karsch). , 1995, Toxicon : official journal of the International Society on Toxinology.

[58]  M. Garcia-Calvo,et al.  Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. , 1993, The Journal of biological chemistry.

[59]  M. A. Cevallos,et al.  Molecular mass determination and assay of venom hyaluronidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. , 1992, Toxicon : official journal of the International Society on Toxinology.

[60]  W. Nentwig,et al.  Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. , 1989, Toxicon : official journal of the International Society on Toxinology.

[61]  P. Moore Anatomy and Morphology , 1987 .

[62]  F. Radvanyi,et al.  Determination of phospholipase A2 activity by a colorimetric assay using a pH indicator. , 1987, Toxicon : official journal of the International Society on Toxinology.

[63]  J. Trevors A BASIC program for estimating LD50 values using the IBM-PC® , 1986, Bulletin of environmental contamination and toxicology.

[64]  Z. Werb,et al.  Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. , 1986, The Journal of biological chemistry.

[65]  J. Gutiérrez,et al.  Pathogenesis of myonecrosis induced by coral snake (Micrurus nigrocinctus) venom in mice. , 1986, British journal of experimental pathology.