Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology

[1]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[2]  M. Kreps,et al.  Strong Constraints on the Rare Decays B-s(0) -> mu(+)mu(-) and B-0 -> mu(+)mu(-) , 2012, 1203.4493.

[3]  M. Davier,et al.  Erratum to: Reevaluation of the hadronic contributions to the muon g−2 and to $\alpha(M_{Z}^{2})$ , 2012 .

[4]  V. M. Ghete,et al.  Combined results of searches for the standard model Higgs boson in pp collisions at √s = 7 TeV , 2012 .

[5]  Abdelhak Djouadi,et al.  Implications of LHC searches for Higgs-portal dark matter , 2011, 1112.3299.

[6]  T. Moroi,et al.  Extra Matters Decree the Relatively Heavy Higgs of Mass about 125 GeV in the Supersymmetric Model , 2011, 1112.3142.

[7]  Z. Xing,et al.  Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays , 2011, 1112.3112.

[8]  T. Moroi,et al.  Wino LSP detection in the light of recent Higgs searches at the LHC , 2011, 1112.3123.

[9]  M. Carena,et al.  A 125 GeV SM-like Higgs in the MSSM and the γγ rate , 2011, 1112.3336.

[10]  Tianjun Li,et al.  A Higgs mass shift to 125 GeV and a multi-jet supersymmetry signal: Miracle of the flippons at the s=7 TeV LHC , 2011, 1112.3024.

[11]  A. Strumia,et al.  Higgs mass implications on the stability of the electroweak vacuum , 2011, 1112.3022.

[12]  H. Baer,et al.  Implications of a 125 GeV Higgs scalar for the LHC supersymmetry and neutralino dark matter searches , 2011, 1112.3017.

[13]  S. Heinemeyer,et al.  Interpreting the LHC Higgs Search Results in the MSSM , 2011, 1112.3026.

[14]  David Shih,et al.  Implications of a 125 GeV Higgs boson for the MSSM and low-scale supersymmetry breaking , 2011, 1112.3068.

[15]  M. Battaglia,et al.  Implications of a 125 GeV Higgs for supersymmetric models , 2011, 1112.3028.

[16]  H. Baer,et al.  LHC discovery potential for supersymmetry with s = 7 TeV and 5 – 30 fb − 1 , 2011, 1112.3044.

[17]  M. Battaglia,et al.  Constraints on the MSSM from the Higgs sector , 2011, 1112.3032.

[18]  L. Hall,et al.  A natural SUSY Higgs near 125 GeV , 2011, 1112.2703.

[19]  S. Baek,et al.  Search for the Higgs portal to a singlet fermionic dark matter at the LHC , 2011, 1112.1847.

[20]  L. Roszkowski,et al.  Bayesian implications of current LHC and XENON100 search limits for the CMSSM , 2011, 1111.6098.

[21]  A. Roeck,et al.  Supersymmetry in light of 1/fb of LHC data , 2011, The European Physical Journal C.

[22]  R. Trotta,et al.  Global fits of the cMSSM including the first LHC and XENON100 data , 2011, 1107.1715.

[23]  D. Colling,et al.  Supersymmetry and dark matter in light of LHC 2010 and XENON100 data , 2011, 1106.2529.

[24]  M. Kadastik,et al.  Implications of Xenon100 and LHC results for Dark Matter models , 2011, 1104.3572.

[25]  E Aprile,et al.  Dark matter results from 100 live days of XENON100 data. , 2011, Physical review letters.

[26]  M. Kadastik,et al.  Implications of Dark Matter direct detection results on LHC physics , 2010 .

[27]  M. Davier,et al.  Reevaluation of the hadronic contributions to the muon g−2 and to $\alpha (M^{2}_{Z})$ , 2010, 1010.4180.

[28]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[29]  M. Raidal,et al.  Long-lived charged Higgs at LHC as a probe of scalar dark matter , 2010, 1005.4409.

[30]  S. Rosier-Lees,et al.  Indirect search for dark matter with micrOMEGAs_2.4 , 2010, Comput. Phys. Commun..

[31]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[32]  M. Kadastik,et al.  Implications of the CDMS result on Dark Matter and LHC physics , 2009, 0912.3797.

[33]  M. Kadastik,et al.  Electroweak symmetry breaking from the soft portal into dark matter and prediction for direct detection. , 2009, Physical review letters.

[34]  Hiren H. Patel,et al.  Vacuum stability, perturbativity, and scalar singlet dark matter , 2009, 0910.3167.

[35]  S. Bethke EPJ manuscript No. (will be inserted by the editor) The 2009 World Average of αs , 2022 .

[36]  A. Roeck,et al.  Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1 , 2009, 0907.5568.

[37]  M. Kadastik,et al.  Dark matter as the signal of grand unification , 2009, 0907.1894.

[38]  M. Kadastik,et al.  Matter parity as the origin of scalar Dark Matter , 2009, 0903.2475.

[39]  Paul Langacker,et al.  Complex Singlet Extension of the Standard Model , 2008, 0811.0393.

[40]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[41]  M. Tytgat,et al.  The inert doublet model: an archetype for dark matter , 2006, hep-ph/0612275.

[42]  A. Pukhov,et al.  micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model , 2006, Comput. Phys. Commun..

[43]  L. Hall,et al.  Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics , 2006, hep-ph/0603188.

[44]  E. Ma Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006, hep-ph/0601225.

[45]  Antonio Delgado,et al.  The Well-Tempered Neutralino , 2006, hep-ph/0601041.

[46]  S. Peirani,et al.  INDIRECT SEARCH FOR DARK MATTER , 2005, astro-ph/0503380.

[47]  C. Burgess,et al.  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[48]  Alan D. Martin,et al.  Note on Scalar Mesons , 1996 .

[49]  Mcdonald,et al.  Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[50]  T. Yanagida,et al.  Horizontal Symmetry and Masses of Neutrinos , 1980 .

[51]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[52]  S. Glashow,et al.  The Future of Elementary Particle Physics , 1979 .

[53]  Ernest Ma,et al.  Pattern of Symmetry Breaking with Two Higgs Doublets , 1978 .

[54]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[55]  G. Guralnik,et al.  Global Conservation Laws and Massless Particles , 1964 .

[56]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[57]  P. W. Higgs Broken symmetries, massless particles and gauge fields , 1964 .

[58]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[59]  澤田 脩,et al.  Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, National Laboratory for High Energy Physics (KEK), February 13-14, 1979 , 2004 .

[60]  Friedrich Luhan,et al.  Combination of CDF and DØ Results on the Mass of the Top Quark , 2002 .

[61]  I. Miyazaki,et al.  AND T , 2022 .

[62]  and as an in , 2022 .