A biophysical study on the mechanism of interactions of DOX or PTX with α-lactalbumin as a delivery carrier

[1]  Peixiao Tang,et al.  Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies , 2017, Scientific Reports.

[2]  Michael R Hamblin,et al.  Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells , 2017, Journal of biophotonics.

[3]  B. Goliaei,et al.  Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. , 2016, Toxicology and applied pharmacology.

[4]  D. Bhakta-Guha,et al.  Cancer nanotheranostics: Strategies, promises and impediments. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[5]  D. Otzen,et al.  Using protein-fatty acid complexes to improve vitamin D stability. , 2016, Journal of dairy science.

[6]  G. Bérubé,et al.  An overview on the delivery of antitumor drug doxorubicin by carrier proteins. , 2016, International journal of biological macromolecules.

[7]  D. Otzen,et al.  Liprotides made of α-lactalbumin and cis fatty acids form core-shell and multi-layer structures with a common membrane-targeting mechanism. , 2016, Biochimica et biophysica acta.

[8]  A. Saboury,et al.  Erratum: Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets , 2016, Scientific Reports.

[9]  A. Saboury,et al.  Erratum: Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets , 2016, Scientific Reports.

[10]  Y. Nagasaki,et al.  Combination Treatment of Murine Colon Cancer with Doxorubicin and Redox Nanoparticles. , 2016, Molecular pharmaceutics.

[11]  Zhiyuan Hu,et al.  Quantitative Proteomic Analysis of Cellular Resistance to the Nanoparticle Abraxane. , 2015, ACS nano.

[12]  B. Goliaei,et al.  Alpha-lactalbumin: A new carrier for vitamin D3 food enrichment , 2015 .

[13]  A. Jemal,et al.  Global cancer statistics, 2012 , 2015, CA: a cancer journal for clinicians.

[14]  J. Dogné,et al.  Erratum to “Preventive Strategies against Bleeding due to Nonvitamin K Antagonist Oral Anticoagulants” , 2014, BioMed research international.

[15]  J. Garssen,et al.  Characterization of T Cell Epitopes in Bovine α-Lactalbumin , 2014, International Archives of Allergy and Immunology.

[16]  Q. Hanley,et al.  When one plus one does not equal two: fluorescence anisotropy in aggregates and multiply labeled proteins. , 2014, Biophysical journal.

[17]  Liying Wang,et al.  Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy , 2014, BioMed research international.

[18]  A. Brodkorb,et al.  Interactions between sodium oleate and α-lactalbumin: The effect of temperature and concentration on complex formation , 2014 .

[19]  P. Chakrabarti,et al.  The effect of the binding of ZnO nanoparticle on the structure and stability of α-lactalbumin: a comparative study. , 2013, The journal of physical chemistry. B.

[20]  Fatih Kocabaş,et al.  Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. , 2013, Molecular pharmaceutics.

[21]  Yi Cao,et al.  One‐Step Photo Synthesis of Protein–Drug Nanoassemblies for Drug Delivery , 2013, Advanced healthcare materials.

[22]  Y. Ying,et al.  Insights into the binding of paclitaxel to human serum albumin: multispectroscopic studies. , 2013, Luminescence : the journal of biological and chemical luminescence.

[23]  S. Thiel,et al.  Protein–fatty acid complexes: biochemistry, biophysics and function , 2013, The FEBS journal.

[24]  G. Bérubé,et al.  Antibiotic doxorubicin and its derivative bind milk β-lactoglobulin. , 2012, Journal of photochemistry and photobiology. B, Biology.

[25]  P. Álvarez,et al.  Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. , 2012, Anti-cancer agents in medicinal chemistry.

[26]  Daniel Agudelo,et al.  Probing the Binding Sites of Antibiotic Drugs Doxorubicin and N-(trifluoroacetyl) Doxorubicin with Human and Bovine Serum Albumins , 2012, PloS one.

[27]  Ahmed O Elzoghby,et al.  Protein-based nanocarriers as promising drug and gene delivery systems. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[28]  Y. Barenholz Doxil®--the first FDA-approved nano-drug: lessons learned. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[29]  N. Stănciuc,et al.  pH and heat-induced structural changes of bovine apo-α-lactalbumin , 2012 .

[30]  Michael R Hamblin,et al.  CA : A Cancer Journal for Clinicians , 2011 .

[31]  Ying Zhang,et al.  Synthesis and characterization of amphiphilic glycidol-chitosan-deoxycholic acid nanoparticles as a drug carrier for doxorubicin. , 2010, Biomacromolecules.

[32]  Kit S Lam,et al.  Well-defined, size-tunable, multifunctional micelles for efficient paclitaxel delivery for cancer treatment. , 2010, Bioconjugate chemistry.

[33]  Y. D. Livney,et al.  Milk proteins as vehicles for bioactives , 2010 .

[34]  A. Brodkorb,et al.  Effect of denaturation of alpha-lactalbumin on the formation of BAMLET (bovine alpha-lactalbumin made lethal to tumor cells). , 2010, Journal of agricultural and food chemistry.

[35]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[36]  E. Miele,et al.  Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer , 2009, International journal of nanomedicine.

[37]  V. Le Tilly,et al.  Molecular interaction between apo or holo alpha-lactalbumin and lysozyme: formation of heterodimers as assessed by fluorescence measurements. , 2009, Biochimica et biophysica acta.

[38]  Shui-Tein Chen,et al.  Targeting the delivery of glycan-based paclitaxel prodrugs to cancer cells via glucose transporters. , 2008, Journal of medicinal chemistry.

[39]  E. Permyakov,et al.  Who is Mr. HAMLET? Interaction of human alpha-lactalbumin with monomeric oleic acid. , 2008, Biochemistry.

[40]  H. Tajmir-Riahi An Overview of Drug Binding to Human Serum Albumin: Protein Folding and Unfolding , 2007 .

[41]  Jie Chen,et al.  Structural changes of α-lactalbumin induced by low pH and oleic acid , 2006 .

[42]  A. Saboury A review on the ligand binding studies by isothermal titration calorimetry , 2006 .

[43]  Lourdes Sánchez,et al.  Interaction of bovine α-lactalbumin with fatty acids as determined by partition equilibrium and fluorescence spectroscopy , 2006 .

[44]  T. Haertlé,et al.  Study of ethanol-induced conformational changes of holo and apo alpha-lactalbumin by spectroscopy and limited proteolysis. , 2006, Molecular nutrition & food research.

[45]  Miguel Calvo Rebollar,et al.  Effect of heat treatment on denaturation of bovine alpha-lactalbumin: determination of kinetic and thermodynamic parameters. , 2005, Journal of agricultural and food chemistry.

[46]  D. Norris,et al.  BMC Biotechnology BioMed Central Methodology article A simple technique for quantifying apoptosis in 96-well plates , 2005 .

[47]  Lotta Gustafsson,et al.  HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy. , 2005, The Journal of nutrition.

[48]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[49]  P. Burke,et al.  Design, synthesis, and biological evaluation of doxorubicin-formaldehyde conjugates targeted to breast cancer cells. , 2004, Journal of medicinal chemistry.

[50]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[51]  Amitabha Chattopadhyay,et al.  Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. , 2003, Chemistry and physics of lipids.

[52]  V. Uversky,et al.  Conformational Prerequisites for α-Lactalbumin Fibrillation† , 2002 .

[53]  P. Sánchez‐Rovira,et al.  Evaluation of a Gemcitabine‐Doxorubicin‐Paclitaxel Combination Schedule through Flow Cytometry Assessment of Apoptosis Extent Induced in Human Breast Cancer Cell Lines , 2002, Japanese journal of cancer research : Gann.

[54]  Y. Matsumura,et al.  Action of Protein-Glutaminase on α-Lactalbumin in the Native and Molten Globule States , 2001 .

[55]  N. C. Price,et al.  The use of circular dichroism in the investigation of protein structure and function. , 2000, Current protein & peptide science.

[56]  L. Berliner,et al.  α‐Lactalbumin: structure and function , 2000 .

[57]  H. Tajmir-Riahi,et al.  Interaction of taxol with human serum albumin. , 2000, Biochimica et biophysica acta.

[58]  W. Y. Chen,et al.  Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: effects of ligand chain length, density and the amount of bound protein. , 2000, Journal of chromatography. A.

[59]  M F Sanner,et al.  Python: a programming language for software integration and development. , 1999, Journal of molecular graphics & modelling.

[60]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[61]  T. Haertlé,et al.  Ethanol-induced conformational transitions in holo-alpha-lactalbumin: spectral and calorimetric studies. , 1998, Biopolymers.

[62]  L. Berliner,et al.  Interactions of α-Lactalbumin with Fatty Acids and Spin Label Analogs* , 1997, The Journal of Biological Chemistry.

[63]  D. Hamada,et al.  The equilibrium intermediate of beta-lactoglobulin with non-native alpha-helical structure. , 1997, Journal of molecular biology.

[64]  Thomas E. Creighton,et al.  Protein structure : a practical approach , 1997 .

[65]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[66]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[67]  V. Hilser,et al.  The heat capacity of proteins , 1995, Proteins.

[68]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[69]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[70]  F. V. Cauwelaert,et al.  A circular dichroic study of Cu(II) binding to bovine α-lactalbumin , 1991 .

[71]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[72]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[73]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[74]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[75]  P. Ross,et al.  Thermodynamics of protein association reactions: forces contributing to stability. , 1981, Biochemistry.

[76]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[77]  R. Hockney,et al.  Quiet high resolution computer models of a plasma , 1974 .

[78]  M. Wilchek,et al.  The circular dichroism of tryosyl and tryptophanyl diketopiperazines. , 1968, The Journal of biological chemistry.