Application-Motivated, Holistic Benchmarking of a Full Quantum Computing Stack

Quantum computing systems need to be benchmarked in terms of practical tasks they would be expected to do. Here, we propose 3 "application-motivated" circuit classes for benchmarking: deep (relevant for state preparation in the variational quantum eigensolver algorithm), shallow (inspired by IQP-type circuits that might be useful for near-term quantum machine learning), and square (inspired by the quantum volume benchmark). We quantify the performance of a quantum computing system in running circuits from these classes using several figures of merit, all of which require exponential classical computing resources and a polynomial number of classical samples (bitstrings) from the system. We study how performance varies with the compilation strategy used and the device on which the circuit is run. Using systems made available by IBM Quantum, we examine their performance, showing that noise-aware compilation strategies may be beneficial, and that device connectivity and noise levels play a crucial role in the performance of the system according to our benchmarks.

[1]  Ross Duncan,et al.  On the qubit routing problem , 2019, TQC.

[2]  F. Jin,et al.  Benchmarking the quantum approximate optimization algorithm , 2019, Quantum Inf. Process..

[3]  Kathleen E. Hamilton,et al.  Error-mitigated data-driven circuit learning on noisy quantum hardware , 2019, Quantum Mach. Intell..

[4]  Kathleen E. Hamilton,et al.  Generative model benchmarks for superconducting qubits , 2018, Physical Review A.

[5]  Margaret Martonosi,et al.  Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[6]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[7]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[8]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[9]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[10]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[11]  Rupak Biswas,et al.  A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware , 2018, npj Quantum Information.

[12]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Urmila Mahadev,et al.  Classical Verification of Quantum Computations , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[14]  Christopher N. Warren,et al.  Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm , 2019, Physical Review Applied.

[15]  Travis S. Humble,et al.  XACC: a system-level software infrastructure for heterogeneous quantum–classical computing , 2019, Quantum Science and Technology.

[16]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[17]  Ross Duncan,et al.  Optimising Clifford Circuits with Quantomatic , 2019, QPL.

[18]  Elham Kashefi,et al.  Methods for classically simulating noisy networked quantum architectures , 2018, Quantum Science and Technology.

[19]  Elham Kashefi,et al.  The Born supremacy: quantum advantage and training of an Ising Born machine , 2019, npj Quantum Information.

[20]  Jayadev Misra,et al.  A Constructive Proof of Vizing's Theorem , 1992, Inf. Process. Lett..

[21]  Andrew W. Cross,et al.  Correlated randomized benchmarking , 2018, 2003.02354.

[22]  Jérôme F Gonthier,et al.  An application benchmark for fermionic quantum simulations. , 2020, 2003.01862.

[23]  Tyler Y Takeshita,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[24]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[25]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[26]  Valeria Saggio,et al.  Cross-verification of independent quantum devices , 2019, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[27]  Margaret Martonosi,et al.  Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[28]  Elham Kashefi,et al.  Verification of Quantum Computation: An Overview of Existing Approaches , 2017, Theory of Computing Systems.

[29]  Simon J. Devitt,et al.  Performing Quantum Computing Experiments in the Cloud , 2016, 1605.05709.

[30]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[31]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[32]  Chen-Fu Chiang,et al.  Scaffold: Quantum Programming Language , 2012 .

[33]  Robin Blume-Kohout,et al.  Direct Randomized Benchmarking for Multiqubit Devices. , 2018, Physical review letters.

[34]  Andrew W. Cross,et al.  Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits , 2019, Physical Review X.

[35]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[36]  Dacheng Tao,et al.  The Expressive Power of Parameterized Quantum Circuits , 2018, ArXiv.

[37]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[38]  Robin Blume-Kohout,et al.  A volumetric framework for quantum computer benchmarks , 2019, Quantum.

[39]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[40]  B. Recht,et al.  Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.

[41]  Sarah Sheldon,et al.  Three-Qubit Randomized Benchmarking. , 2017, Physical review letters.

[42]  Ashley Montanaro,et al.  Achieving quantum supremacy with sparse and noisy commuting quantum computations , 2016, 1610.01808.

[43]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[44]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[45]  C. Porter,et al.  Fluctuations of Nuclear Reaction Widths , 1956 .

[46]  J. Eisert,et al.  Architectures for quantum simulation showing a quantum speedup , 2017, 1703.00466.

[47]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[48]  Anton Frisk Kockum,et al.  Quantum approximate optimization of the exact-cover problem on a superconducting quantum processor , 2019, 1912.10495.

[49]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[50]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[51]  John A. Gunnels,et al.  Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits , 2019, 1910.09534.

[52]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[53]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[54]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[55]  Margaret Martonosi,et al.  ScaffCC: Scalable compilation and analysis of quantum programs , 2015, Parallel Comput..

[56]  Margaret Martonosi,et al.  ScaffCC: a framework for compilation and analysis of quantum computing programs , 2014, Conf. Computing Frontiers.

[57]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[58]  Koen Bertels,et al.  Evaluation of Parameterized Quantum Circuits: on the design, and the relation between classification accuracy, expressibility and entangling capability , 2020, ArXiv.

[59]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[60]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[61]  Jack J. Dongarra,et al.  The LINPACK Benchmark: past, present and future , 2003, Concurr. Comput. Pract. Exp..

[62]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[63]  Travis S. Humble,et al.  Establishing the quantum supremacy frontier with a 281 Pflop/s simulation , 2019, Quantum Science and Technology.

[64]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[65]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[66]  Peter J. Karalekas,et al.  A quantum-classical cloud platform optimized for variational hybrid algorithms , 2020, Quantum Science and Technology.

[67]  Ryan LaRose,et al.  Overview and Comparison of Gate Level Quantum Software Platforms , 2018, Quantum.

[68]  Seth Lloyd,et al.  Convergence conditions for random quantum circuits , 2005, quant-ph/0503210.

[69]  U. Vazirani,et al.  On the complexity and verification of quantum random circuit sampling , 2018, Nature Physics.

[70]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[71]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[73]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[74]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[75]  C. Monroe,et al.  Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator , 2019, Proceedings of the National Academy of Sciences.

[76]  Elham Kashefi,et al.  Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computation (Extended Abstract) , 2017, 1704.01998.

[77]  Hartmut Neven,et al.  Fourier analysis of sampling from noisy chaotic quantum circuits , 2017, 1708.01875.

[78]  Arnaud Carignan-Dugas,et al.  From randomized benchmarking experiments to gate-set circuit fidelity: how to interpret randomized benchmarking decay parameters , 2018, New Journal of Physics.

[79]  Ross Duncan,et al.  Phase Gadget Synthesis for Shallow Circuits , 2019, QPL.

[80]  Ross Duncan,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[81]  D. Cory,et al.  Quantum bootstrapping via compressed quantum Hamiltonian learning , 2014, 1409.1524.

[82]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[83]  Margaret Martonosi,et al.  Compiler Management of Communication and Parallelism for Quantum Computation , 2015, ASPLOS.

[84]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[85]  M. Blaauboer,et al.  An analytical decomposition protocol for optimal implementation of two-qubit entangling gates , 2006, cond-mat/0609750.

[86]  J. Eisert,et al.  Direct certification of a class of quantum simulations , 2016, 1602.00703.

[87]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[88]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[89]  C. Figgatt,et al.  Demonstration of the QCCD trapped-ion quantum computer architecture , 2020, 2003.01293.

[90]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[91]  M. Bremner,et al.  Instantaneous Quantum Computation , 2008, 0809.0847.

[92]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[93]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[94]  Stephanie Wehner,et al.  Towards Large-Scale Quantum Networks , 2019, NANOCOM.

[95]  Adam Bouland,et al.  Quantum Supremacy and the Complexity of Random Circuit Sampling , 2018, ITCS.

[96]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[97]  Jay M. Gambetta,et al.  Effective Hamiltonian models of the cross-resonance gate , 2018, Physical Review A.

[98]  Alejandro Perdomo-Ortiz,et al.  A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.

[99]  Ramis Movassagh,et al.  Efficient unitary paths and quantum computational supremacy: A proof of average-case hardness of Random Circuit Sampling , 2018, 1810.04681.