暂无分享,去创建一个
Carsten Schneider | A. von Manteuffel | Johannes Blümlein | Jakob Ablinger | Abilio De Freitas | Arnd Behring | J. Blümlein | A. Manteuffel | J. Ablinger | A. Behring | A. Freitas | Carsten Schneider | A. D. Freitas
[1] J. B. Ferguson,et al. Motives , 1983 .
[2] Stefan Weinzierl,et al. Expansion around half-integer values, binomial sums, and inverse binomial sums , 2004, hep-ph/0402131.
[3] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[4] I. Bierenbaum,et al. The gluonic operator matrix elements at O(αs2) for DIS heavy flavor production , 2009, 0901.0669.
[5] Sergei A. Abramov,et al. Polynomial ring automorphisms, rational (w, sigma)-canonical forms, and the assignment problem , 2010, J. Symb. Comput..
[6] P. W. Karlsson,et al. Multiple Gaussian hypergeometric series , 1985 .
[7] Carsten Schneider,et al. Massive 3-loop Ladder Diagrams for Quarkonic Local Operator Matrix Elements , 2012, 1206.2252.
[8] Carsten Schneider,et al. SIMPLIFYING SUMS IN ΠΣ*-EXTENSIONS , 2007 .
[9] Peter A. Hendriks,et al. Solving Difference Equations in Finite Terms , 1999, J. Symb. Comput..
[10] James Jeans. The mathematical theory of electricity and magnetism , 1908 .
[11] Carsten Schneider,et al. Parameterized Telescoping Proves Algebraic Independence of Sums , 2008, ArXiv.
[12] Carsten Schneider,et al. Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.
[13] J. Blumlein,et al. O(alpha(s)**2) and O(alpha(s)**3) Heavy Flavor Contributions to Transversity at Q**2 >>m**2 , 2009, 0909.1547.
[14] R. Risch. The problem of integration in finite terms , 1969 .
[15] Carsten Schneider,et al. A new Sigma approach to multi-summation , 2005, Adv. Appl. Math..
[16] Ericka Stricklin-Parker,et al. Ann , 2005 .
[17] Mourad E. H. Ismail,et al. Special functions, q-series, and related topics , 1997 .
[18] C. Schneider,et al. The O(αs3) massive operator matrix elements of O(nf) for the structure function F2(x,Q2) and transversity , 2010, Nuclear physics. B.
[19] Y. Frishman. Operator products at almost light like distances , 1971 .
[20] Doron Zeilberger,et al. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory , 2006, Adv. Appl. Math..
[21] M. Steinhauser. MATAD: a program package for the computation of MAssive TADpoles , 2000 .
[22] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[23] Carsten Schneider,et al. Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction , 2013, Journal of Physics: Conference Series.
[24] C. Studerus,et al. Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..
[25] J. Fuster,et al. High precision fundamental constants at the TeV scale , 2014, 1405.4781.
[26] C. Lang. The theory of quark and gluon interactions , 1994 .
[27] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[28] Johannes Blumlein,et al. Mellin moments of the O(αs3) heavy flavor contributions to unpolarized deep-inelastic scattering at Q2≫m2 and anomalous dimensions , 2009, 0904.3563.
[29] J. Blumlein,et al. Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers , 2013, 1310.5645.
[30] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[31] Michal Czakon,et al. Automatized analytic continuation of Mellin-Barnes integrals , 2005, Computer Physics Communications.
[32] Andrej Bauer,et al. Multibasic and Mixed Hypergeometric Gosper-Type Algorithms , 1999, J. Symb. Comput..
[33] Bruno Buchberger,et al. What Is Symbolic Computation? , 1995, CP.
[34] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[35] A. De Freitas,et al. The Longitudinal Heavy Quark Structure Function F_L^Q\barQ in the Region Q^2 ≫m^2 at O(\alpha_s^3) , 2006 .
[36] Harold Exton,et al. Multiple hypergeometric functions and applications , 1979 .
[37] J. Blumlein,et al. Iterated Binomial Sums and their Associated Iterated Integrals , 2014, 1407.1822.
[38] Carsten Schneider,et al. Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions , 2013 .
[39] J. Blumlein,et al. The O(αs3TF2) contributions to the gluonic operator matrix element , 2014, 1405.4259.
[40] J. Ablinger,et al. Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.
[41] Josef Schicho,et al. Computer Algebra and Polynomials , 2015, Lecture Notes in Computer Science.
[42] Johannes Blümlein,et al. Algebraic relations between harmonic sums and associated quantities , 2004 .
[43] E. Panzer. On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.
[44] K. Lipka,et al. Precise charm-quark mass from deep-inelastic scattering , 2012, 1212.2355.
[45] R. Brandt. Field Equations in Quantum Electrodynamics , 1970 .
[46] S. Bethke,et al. Workshop on Precision Measurements of α s , 2011 .
[47] Carsten Schneider,et al. Two-loop massive operator matrix elements for unpolarized heavy flavor production to , 2008, Nuclear Physics B.
[48] J. Henn. Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.
[49] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[50] B. Dwork. Generalized Hypergeometric Functions , 1990 .
[51] Johannes Blumlein,et al. Two-Loop Massive Operator Matrix Elements and Unpolarized Heavy Flavor Production at Asymptotic Values Q^2 >> m^2 , 2007 .
[52] La fonction hypergéométrique , 1937 .
[53] Manuel Bronstein. On Solutions of Linear Ordinary Difference Equations in their Coefficient Field , 2000, J. Symb. Comput..
[54] Doron Zeilberger,et al. The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..
[55] Carsten Schneider,et al. Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials , 2011, ArXiv.
[56] Josef Schicho,et al. Computer algebra and polynomials : applications of algebra and number theory , 2015 .
[57] H. Mellin,et al. Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen , 1910 .
[58] A. Smirnov,et al. On the resolution of singularities of multiple Mellin–Barnes integrals , 2009, 0901.0386.
[59] Ravi P. Agarwal. Generalized hypergeometric series , 1963 .
[60] Manuel Kauers,et al. The Holonomic Toolkit , 2013 .
[61] J. Fleischer,et al. Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass , 1999 .
[62] Kurt Wegschaider,et al. Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .
[63] S. Kurth,et al. Harmonic sums and Mellin transforms up to two-loop order , 1999 .
[64] J. Blumlein,et al. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms , 2014, 1403.1137.
[65] J. Blumlein,et al. The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3) , 2014, 1402.0359.
[66] J. Blumlein,et al. The O(αs2) heavy quark corrections to charged current deep-inelastic scattering at large virtualities , 2014, 1401.4352.
[67] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[68] W. L. van Neerven,et al. Heavy quark coefficient functions at asymptotic values Q2>>m2 , 1996, hep-ph/9601302.
[69] Carsten Schneider,et al. The $O(\alpha_s^3 n_f T_F^2 C_{A,F})$} Contributions to the Gluonic Massive Operator Matrix Elements , 2012, 1205.4184.
[70] A. Kotikov. Differential equations method. New technique for massive Feynman diagram calculation , 1991 .
[71] Kenneth G. Wilson,et al. Non-Lagrangian Models of Current Algebra , 1969 .
[72] Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[73] S. Moch,et al. The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.
[74] Carsten Schneider,et al. Structural theorems for symbolic summation , 2010, Applicable Algebra in Engineering, Communication and Computing.
[75] A. von Manteuffel,et al. O(α$_s^3$) heavy flavor contributions to the charged current structure function $xF_3(x,Q^2)$ at large momentum transfer , 2015 .
[76] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[77] A. von Manteuffel,et al. The 3-loop pure singlet heavy flavor contributions to the structure function F2(x,Q2) and the anomalous dimension , 2014, 1409.1135.
[78] Carsten Schneider,et al. Product Representations in ΠΣ-Fields , 2005 .
[79] B. W. Conolly,et al. Handbook of Hypergeometric Integrals. , 1978 .
[80] F. Tkachov,et al. New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x-space technique , 1980 .
[81] Carsten Schneider,et al. A refined difference field theory for symbolic summation , 2008, J. Symb. Comput..
[82] J. Blumlein,et al. The 3-loop non-singlet heavy flavor contributions to the structure function g1(x,Q2) at large momentum transfer , 2015, 1504.08217.
[83] E. W. Barnes. A New Development of the Theory of the Hypergeometric Functions , 1908 .
[84] I. Bierenbaum,et al. The logarithmic contributions to the $$O(\alpha _s^3)$$O(αs3) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering , 2014, 1403.6356.
[85] Manuel Bronstein,et al. An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..
[86] S. Moch,et al. The ABM parton distributions tuned to LHC data , 2013, 1310.3059.
[87] N. E. Nörlund. Vorlesungen über Differenzenrechnung , 1924 .
[88] J. A. M. Vermaseren. Harmonic sums, Mellin transforms and Integrals , 1999 .
[89] Manuel Bronstein,et al. Symbolic integration I: transcendental functions , 1997 .
[90] Richard Kreckel,et al. Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language , 2000, J. Symb. Comput..
[91] Jakob Ablinger,et al. A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics , 2010, 1011.1176.
[92] Margaret Nichols. Trans , 2015, De-centering queer theory.
[93] L. Tancredi. Integration by parts identities in integer numbers of dimensions. A criterion for decoupling systems of differential equations , 2015, 1509.03330.
[94] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[95] J. Blumlein,et al. The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x,Q2) and transversity , 2014, 1406.4654.
[96] R. Schabinger,et al. A quasi-finite basis for multi-loop Feynman integrals , 2014, 1411.7392.
[97] Johannes Blümlein,et al. Structural relations of harmonic sums and Mellin transforms up to weight w=5 , 2009, Comput. Phys. Commun..
[98] Carsten Schneider,et al. Fast Algorithms for Refined Parameterized Telescoping in Difference Fields , 2013, Computer Algebra and Polynomials.
[99] S. Klein. Mellin moments of heavy flavor contributions to F_2(x,Q^2) at NNLO , 2009, 0910.3101.
[100] J. A. M. Vermaseren,et al. The Multiple Zeta Value data mine , 2009, Comput. Phys. Commun..
[101] J. Blumlein,et al. Mellin moments of the next-to-next-to-leading order coefficient functions for the Drell–Yan process and hadronic Higgs-boson production , 2005 .
[102] Stefan Weinzierl,et al. Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .
[103] Flavia Stan,et al. A symbolic summation approach to Feynman integral calculus , 2010, J. Symb. Comput..
[104] Francis Brown,et al. The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.
[105] Fabian Philipp. F N f ) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x, Q 2 ) at Q 2 m 2 , 2010 .
[106] Alexander A Penin. Two-loop corrections to Bhabha scattering. , 2005, Physical review letters.
[107] M.Yu. Kalmykov,et al. Massive Feynman diagrams and inverse binomial sums , 2004 .
[108] Moulay A. Barkatou,et al. An algorithm for computing a companion block diagonal form for a system of linear differential equations , 1993, Applicable Algebra in Engineering, Communication and Computing.
[109] Carsten Schneider,et al. Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms , 2013, Journal of Mathematical Physics.
[110] Michael Karr,et al. Summation in Finite Terms , 1981, JACM.