Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

Abstract Three loop ladder and V -topology diagrams contributing to the massive operator matrix element A Q g are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter e . Given these representations, the desired Laurent series expansions in e can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin–Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist–Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product–sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V -topologies.

[1]  J. B. Ferguson,et al.  Motives , 1983 .

[2]  Stefan Weinzierl,et al.  Expansion around half-integer values, binomial sums, and inverse binomial sums , 2004, hep-ph/0402131.

[3]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[4]  I. Bierenbaum,et al.  The gluonic operator matrix elements at O(αs2) for DIS heavy flavor production , 2009, 0901.0669.

[5]  Sergei A. Abramov,et al.  Polynomial ring automorphisms, rational (w, sigma)-canonical forms, and the assignment problem , 2010, J. Symb. Comput..

[6]  P. W. Karlsson,et al.  Multiple Gaussian hypergeometric series , 1985 .

[7]  Carsten Schneider,et al.  Massive 3-loop Ladder Diagrams for Quarkonic Local Operator Matrix Elements , 2012, 1206.2252.

[8]  Carsten Schneider,et al.  SIMPLIFYING SUMS IN ΠΣ*-EXTENSIONS , 2007 .

[9]  Peter A. Hendriks,et al.  Solving Difference Equations in Finite Terms , 1999, J. Symb. Comput..

[10]  James Jeans The mathematical theory of electricity and magnetism , 1908 .

[11]  Carsten Schneider,et al.  Parameterized Telescoping Proves Algebraic Independence of Sums , 2008, ArXiv.

[12]  Carsten Schneider,et al.  Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.

[13]  J. Blumlein,et al.  O(alpha(s)**2) and O(alpha(s)**3) Heavy Flavor Contributions to Transversity at Q**2 >>m**2 , 2009, 0909.1547.

[14]  R. Risch The problem of integration in finite terms , 1969 .

[15]  Carsten Schneider,et al.  A new Sigma approach to multi-summation , 2005, Adv. Appl. Math..

[16]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[17]  Mourad E. H. Ismail,et al.  Special functions, q-series, and related topics , 1997 .

[18]  C. Schneider,et al.  The O(αs3) massive operator matrix elements of O(nf) for the structure function F2(x,Q2) and transversity , 2010, Nuclear physics. B.

[19]  Y. Frishman Operator products at almost light like distances , 1971 .

[20]  Doron Zeilberger,et al.  Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory , 2006, Adv. Appl. Math..

[21]  M. Steinhauser MATAD: a program package for the computation of MAssive TADpoles , 2000 .

[22]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[23]  Carsten Schneider,et al.  Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction , 2013, Journal of Physics: Conference Series.

[24]  C. Studerus,et al.  Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..

[25]  J. Fuster,et al.  High precision fundamental constants at the TeV scale , 2014, 1405.4781.

[26]  C. Lang The theory of quark and gluon interactions , 1994 .

[27]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[28]  Johannes Blumlein,et al.  Mellin moments of the O(αs3) heavy flavor contributions to unpolarized deep-inelastic scattering at Q2≫m2 and anomalous dimensions , 2009, 0904.3563.

[29]  J. Blumlein,et al.  Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers , 2013, 1310.5645.

[30]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[31]  Michal Czakon,et al.  Automatized analytic continuation of Mellin-Barnes integrals , 2005, Computer Physics Communications.

[32]  Andrej Bauer,et al.  Multibasic and Mixed Hypergeometric Gosper-Type Algorithms , 1999, J. Symb. Comput..

[33]  Bruno Buchberger,et al.  What Is Symbolic Computation? , 1995, CP.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  A. De Freitas,et al.  The Longitudinal Heavy Quark Structure Function F_L^Q\barQ in the Region Q^2 ≫m^2 at O(\alpha_s^3) , 2006 .

[36]  Harold Exton,et al.  Multiple hypergeometric functions and applications , 1979 .

[37]  J. Blumlein,et al.  Iterated Binomial Sums and their Associated Iterated Integrals , 2014, 1407.1822.

[38]  Carsten Schneider,et al.  Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions , 2013 .

[39]  J. Blumlein,et al.  The O(αs3TF2) contributions to the gluonic operator matrix element , 2014, 1405.4259.

[40]  J. Ablinger,et al.  Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.

[41]  Josef Schicho,et al.  Computer Algebra and Polynomials , 2015, Lecture Notes in Computer Science.

[42]  Johannes Blümlein,et al.  Algebraic relations between harmonic sums and associated quantities , 2004 .

[43]  E. Panzer On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.

[44]  K. Lipka,et al.  Precise charm-quark mass from deep-inelastic scattering , 2012, 1212.2355.

[45]  R. Brandt Field Equations in Quantum Electrodynamics , 1970 .

[46]  S. Bethke,et al.  Workshop on Precision Measurements of α s , 2011 .

[47]  Carsten Schneider,et al.  Two-loop massive operator matrix elements for unpolarized heavy flavor production to , 2008, Nuclear Physics B.

[48]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[49]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[50]  B. Dwork Generalized Hypergeometric Functions , 1990 .

[51]  Johannes Blumlein,et al.  Two-Loop Massive Operator Matrix Elements and Unpolarized Heavy Flavor Production at Asymptotic Values Q^2 >> m^2 , 2007 .

[52]  La fonction hypergéométrique , 1937 .

[53]  Manuel Bronstein On Solutions of Linear Ordinary Difference Equations in their Coefficient Field , 2000, J. Symb. Comput..

[54]  Doron Zeilberger,et al.  The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..

[55]  Carsten Schneider,et al.  Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials , 2011, ArXiv.

[56]  Josef Schicho,et al.  Computer algebra and polynomials : applications of algebra and number theory , 2015 .

[57]  H. Mellin,et al.  Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen , 1910 .

[58]  A. Smirnov,et al.  On the resolution of singularities of multiple Mellin–Barnes integrals , 2009, 0901.0386.

[59]  Ravi P. Agarwal Generalized hypergeometric series , 1963 .

[60]  Manuel Kauers,et al.  The Holonomic Toolkit , 2013 .

[61]  J. Fleischer,et al.  Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass , 1999 .

[62]  Kurt Wegschaider,et al.  Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .

[63]  S. Kurth,et al.  Harmonic sums and Mellin transforms up to two-loop order , 1999 .

[64]  J. Blumlein,et al.  Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms , 2014, 1403.1137.

[65]  J. Blumlein,et al.  The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3) , 2014, 1402.0359.

[66]  J. Blumlein,et al.  The O(αs2) heavy quark corrections to charged current deep-inelastic scattering at large virtualities , 2014, 1401.4352.

[67]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[68]  W. L. van Neerven,et al.  Heavy quark coefficient functions at asymptotic values Q2>>m2 , 1996, hep-ph/9601302.

[69]  Carsten Schneider,et al.  The $O(\alpha_s^3 n_f T_F^2 C_{A,F})$} Contributions to the Gluonic Massive Operator Matrix Elements , 2012, 1205.4184.

[70]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[71]  Kenneth G. Wilson,et al.  Non-Lagrangian Models of Current Algebra , 1969 .

[72]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[73]  S. Moch,et al.  The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.

[74]  Carsten Schneider,et al.  Structural theorems for symbolic summation , 2010, Applicable Algebra in Engineering, Communication and Computing.

[75]  A. von Manteuffel,et al.  O(α$_s^3$) heavy flavor contributions to the charged current structure function $xF_3(x,Q^2)$ at large momentum transfer , 2015 .

[76]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[77]  A. von Manteuffel,et al.  The 3-loop pure singlet heavy flavor contributions to the structure function F2(x,Q2) and the anomalous dimension , 2014, 1409.1135.

[78]  Carsten Schneider,et al.  Product Representations in ΠΣ-Fields , 2005 .

[79]  B. W. Conolly,et al.  Handbook of Hypergeometric Integrals. , 1978 .

[80]  F. Tkachov,et al.  New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x-space technique , 1980 .

[81]  Carsten Schneider,et al.  A refined difference field theory for symbolic summation , 2008, J. Symb. Comput..

[82]  J. Blumlein,et al.  The 3-loop non-singlet heavy flavor contributions to the structure function g1(x,Q2) at large momentum transfer , 2015, 1504.08217.

[83]  E. W. Barnes A New Development of the Theory of the Hypergeometric Functions , 1908 .

[84]  I. Bierenbaum,et al.  The logarithmic contributions to the $$O(\alpha _s^3)$$O(αs3) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering , 2014, 1403.6356.

[85]  Manuel Bronstein,et al.  An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..

[86]  S. Moch,et al.  The ABM parton distributions tuned to LHC data , 2013, 1310.3059.

[87]  N. E. Nörlund Vorlesungen über Differenzenrechnung , 1924 .

[88]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .

[89]  Manuel Bronstein,et al.  Symbolic integration I: transcendental functions , 1997 .

[90]  Richard Kreckel,et al.  Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language , 2000, J. Symb. Comput..

[91]  Jakob Ablinger,et al.  A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics , 2010, 1011.1176.

[92]  Margaret Nichols Trans , 2015, De-centering queer theory.

[93]  L. Tancredi Integration by parts identities in integer numbers of dimensions. A criterion for decoupling systems of differential equations , 2015, 1509.03330.

[94]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[95]  J. Blumlein,et al.  The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x,Q2) and transversity , 2014, 1406.4654.

[96]  R. Schabinger,et al.  A quasi-finite basis for multi-loop Feynman integrals , 2014, 1411.7392.

[97]  Johannes Blümlein,et al.  Structural relations of harmonic sums and Mellin transforms up to weight w=5 , 2009, Comput. Phys. Commun..

[98]  Carsten Schneider,et al.  Fast Algorithms for Refined Parameterized Telescoping in Difference Fields , 2013, Computer Algebra and Polynomials.

[99]  S. Klein Mellin moments of heavy flavor contributions to F_2(x,Q^2) at NNLO , 2009, 0910.3101.

[100]  J. A. M. Vermaseren,et al.  The Multiple Zeta Value data mine , 2009, Comput. Phys. Commun..

[101]  J. Blumlein,et al.  Mellin moments of the next-to-next-to-leading order coefficient functions for the Drell–Yan process and hadronic Higgs-boson production , 2005 .

[102]  Stefan Weinzierl,et al.  Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .

[103]  Flavia Stan,et al.  A symbolic summation approach to Feynman integral calculus , 2010, J. Symb. Comput..

[104]  Francis Brown,et al.  The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.

[105]  Fabian Philipp F N f ) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x, Q 2 ) at Q 2 m 2 , 2010 .

[106]  Alexander A Penin Two-loop corrections to Bhabha scattering. , 2005, Physical review letters.

[107]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[108]  Moulay A. Barkatou,et al.  An algorithm for computing a companion block diagonal form for a system of linear differential equations , 1993, Applicable Algebra in Engineering, Communication and Computing.

[109]  Carsten Schneider,et al.  Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms , 2013, Journal of Mathematical Physics.

[110]  Michael Karr,et al.  Summation in Finite Terms , 1981, JACM.