CRISPR–Cas12b enables efficient plant genome engineering

[1]  David R. Liu,et al.  Search-and-replace genome editing without double-strand breaks or donor DNA , 2019, Nature.

[2]  Aimee A. Malzahn,et al.  The emerging and uncultivated potential of CRISPR technology in plant science , 2019, Nature Plants.

[3]  Wei Li,et al.  Artificial sgRNAs engineered for genome editing with new Cas12b orthologs , 2019, Cell Discovery.

[4]  Jonathan L. Schmid-Burgk,et al.  Engineering of CRISPR-Cas12b for human genome editing , 2019, Nature Communications.

[5]  Wei Li,et al.  Repurposing CRISPR-Cas12b for mammalian genome engineering , 2018, Cell Discovery.

[6]  K. Severinov,et al.  Defining the seed sequence of the Cas12b CRISPR-Cas effector complex , 2018, RNA biology.

[7]  Tao Zhang,et al.  Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites. , 2018, Molecular plant.

[8]  Tao Zhang,et al.  CRISPRMatch: An Automatic Calculation and Visualization Tool for High-throughput CRISPR Genome-editing Data Analysis , 2018, International journal of biological sciences.

[9]  W. Xie,et al.  A potent Cas9-derived gene activator for plant and mammalian cells , 2017, Nature Plants.

[10]  D. Voytas,et al.  Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. , 2017, Molecular plant.

[11]  Zhiwei Huang,et al.  Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA , 2017, Cell Research.

[12]  Tao Zhang,et al.  A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants , 2017, Nature Plants.

[13]  Yanli Wang,et al.  C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. , 2017, Molecular cell.

[14]  D. Patel,et al.  PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease , 2016, Cell.

[15]  Yiping Qi,et al.  A Single Transcript CRISPR-Cas9 System for Efficient Genome Editing in Plants. , 2016, Molecular plant.

[16]  Yiping Qi,et al.  CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects , 2016, Plant Cell Reports.

[17]  Eugene V Koonin,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[18]  Xingliang Ma,et al.  DSDecode: A Web-Based Tool for Decoding of Sequencing Chromatograms for Genotyping of Targeted Mutations. , 2015, Molecular plant.

[19]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[20]  Daniel F. Voytas,et al.  A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation1[OPEN] , 2015, Plant Physiology.

[21]  Ron Weiss,et al.  Highly-efficient Cas9-mediated transcriptional programming , 2014, Nature Methods.

[22]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[23]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[24]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[25]  A. Katsarou,et al.  Reporting for specific materials, systems and methods , 2018 .