Quaternion algebras and square power classes over biquadratic extensions

Recently the Galois module structure of square power classes of a field K has been computed under the action of Gal(K/F ) in the case where Gal(K/F ) is the Klein 4group. Despite the fact that the modular representation theory over this group ring includes an infinite number of non-isomorphic indecomposable types, the decomposition for square power classes includes at most 9 distinct summand types. In this paper we determine the multiplicity of each summand type in terms of a particular subspace of Br(F ), and show that all “unexceptional" summand types are possible.

[1]  Andrew Schultz,et al.  Galois module structure of square power classes for biquadratic extensions , 2021, Canadian Journal of Mathematics.

[2]  A. Schultz,et al.  Galois Module Structure of pTh‐Power Classes of Cyclic Extensions of Degree pn , 2004, math/0409532.

[3]  A. Schultz Parameterizing solutions to any Galois embedding problem over Z/pnZ with elementary p-abelian kernel , 2011, 1109.4071.

[4]  Andrew Schultz,et al.  Galois module structure of the units modulo $p^m$ of cyclic extensions of degree $p^n$ , 2021 .

[5]  G. Militaru,et al.  Associative algebras , 2019, Extending Structures.

[6]  I. Reiner,et al.  ASSOCIATIVE ALGEBRAS(Graduate Texts in Mathematics, 88) , 1983 .

[7]  W. Waterhouse The Normal Closures of Certain Kummer Extensions , 1994, Canadian Mathematical Bulletin.

[8]  A. Ledet On 2-Groups as Galois Groups , 1995, Canadian Journal of Mathematics.

[9]  J. Mináč,et al.  A characterization of C-fields via Galois groups , 1991 .

[10]  J. Mináč,et al.  Galois module structure of Galois cohomology and partial Euler-Poincaré characteristics , 2004, math/0409484.

[11]  A. Fröhlich Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants. , 1985 .

[12]  J. Mináč,et al.  Galois module structure ofpth-power classes of extensions of degreep , 2002, math/0202224.

[13]  D. Benson,et al.  Representations and Cohomology , 1991 .

[14]  A. Schultz,et al.  p-GROUPS HAVE UNBOUNDED REALIZATION MULTIPLICITY , 2011, 1109.4070.