Frontiers in free‐energy calculations of biological systems

In a matter of three decades, free‐energy calculations have emerged as an indispensable tool to tackle deep biological questions that experiment alone has left unresolved. In spite of recent advances on the hardware front that have pushed back the limitations of brute‐force molecular dynamics simulations, opening the way to time and size scales hitherto never attained, they represent a cogent alternative to access with unparalleled accuracy the thermodynamics and possibly the kinetics that underlie the complex processes of the cell machinery. From a pragmatic perspective, the present review draws a picture of how the field has been shaped and invigorated by milestone developments, application, and sometimes rediscovery of foundational principles laid down years ago to reach new frontiers in the exploration of intricate biological phenomena. Through a series of illustrative examples, distinguishing between alchemical and geometrical transformations, it discusses how far free‐energy calculations have come, what are the current hurdles they have to overcome, and the challenges they are facing for tomorrow. WIREs Comput Mol Sci 2014, 4:71–89. doi: 10.1002/wcms.1157

[1]  J N Weinstein,et al.  Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: a thermodynamic cycle-perturbation approach. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[2]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.

[3]  Erik Lindahl,et al.  Position‐resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations , 2007, Proteins.

[4]  G. de Fabritiis,et al.  Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations , 2011, Proceedings of the National Academy of Sciences.

[5]  Alan E. Mark,et al.  Calculation of Relative Free-Energy Via Indirect Pathways , 1991 .

[6]  M. Karplus,et al.  Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. , 1989, Science.

[7]  K. Schulten,et al.  Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality , 2003 .

[8]  G. Hummer,et al.  Free energy reconstruction from nonequilibrium single-molecule pulling experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Christophe Chipot,et al.  Can free energy calculations be fast and accurate at the same time? Binding of low-affinity, non-peptide inhibitors to the SH2 domain of the src protein , 2005, J. Comput. Aided Mol. Des..

[10]  C. Chipot,et al.  Overcoming free energy barriers using unconstrained molecular dynamics simulations. , 2004, The Journal of chemical physics.

[11]  Klaus Schulten,et al.  Diffusion of glycerol through Escherichia coli aquaglyceroporin GlpF. , 2008, Biophysical journal.

[12]  Christophe Chipot,et al.  Efficient determination of protein-protein standard binding free energies from first principles. , 2013, Journal of chemical theory and computation.

[13]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[14]  Jeremy C. Smith,et al.  Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. , 1996, Biophysical journal.

[15]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Christophe Chipot,et al.  Calculating Position-Dependent Diffusivity in Biased Molecular Dynamics Simulations. , 2013, Journal of chemical theory and computation.

[17]  So Iwata,et al.  Molecular Basis of Alternating Access Membrane Transport by the Sodium-hydantoin Transporter Mhp1 , 2011 .

[18]  A. Pohorille,et al.  Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A , 2005 .

[19]  A. Cavalli,et al.  Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. , 2010, Journal of the American Chemical Society.

[20]  Christophe Chipot,et al.  Can Absolute Free Energies of Association Be Estimated from Molecular Mechanical Simulations? The Biotin−Streptavidin System Revisited , 2001 .

[21]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Roux,et al.  Energetics of ion conduction through the K + channel , 2022 .

[23]  Lu Wang,et al.  Inclusion of Loss of Translational and Rotational Freedom in Theoretical Estimates of Free Energies of Binding. Application to a Complex of Benzene and Mutant T4 Lysozyme , 1997 .

[24]  Richard H. Henchman,et al.  Standard Free Energy of Binding from a One-Dimensional Potential of Mean Force. , 2009, Journal of chemical theory and computation.

[25]  Klaus Schulten,et al.  Molecular Basis of Drug Resistance in A/H1N1 Virus , 2012, J. Chem. Inf. Model..

[26]  W. L. Jorgensen Free energy calculations: a breakthrough for modeling organic chemistry in solution , 1989 .

[27]  Hagai Meirovitch,et al.  New method for calculating the absolute free energy of binding: the effect of a mobile loop on the avidin/biotin complex. , 2011, The journal of physical chemistry. B.

[28]  James Andrew McCammon,et al.  Ligand-receptor interactions , 1984, Comput. Chem..

[29]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[30]  Benoît Roux,et al.  Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant. , 2006, Journal of chemical theory and computation.

[31]  Klaus Schulten,et al.  Oligomerization state of photosynthetic core complexes is correlated with the dimerization affinity of a transmembrane helix. , 2011, Journal of the American Chemical Society.

[32]  Christophe Chipot,et al.  Enhanced Sampling of Multidimensional Free-Energy Landscapes Using Adaptive Biasing Forces , 2010, SIAM Journal on Applied Mathematics.

[33]  Christophe Chipot,et al.  Potential of Mean Force Calculations: A Multiple-Walker Adaptive Biasing Force Approach , 2010 .

[34]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[35]  Siewert J Marrink,et al.  Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. , 2012, Journal of the American Chemical Society.

[36]  KumarShankar,et al.  The weighted histogram analysis method for free-energy calculations on biomolecules. I , 1992 .

[37]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[38]  Daan Frenkel,et al.  COMPUTER-SIMULATION STUDY OF FREE-ENERGY BARRIERS IN CRYSTAL NUCLEATION , 1992 .

[39]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[40]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[41]  Pengyu Y. Ren,et al.  Calculation of protein–ligand binding free energy by using a polarizable potential , 2008, Proceedings of the National Academy of Sciences.

[42]  C. Dellago,et al.  Reaction coordinates of biomolecular isomerization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[44]  Ian R. McDonald,et al.  Machine Calculation of Thermodynamic Properties of a Simple Fluid at Supercritical Temperatures , 1967 .

[45]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .

[46]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[47]  B. Roux,et al.  Calculation of absolute protein-ligand binding free energy from computer simulations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  David L Mobley,et al.  Alchemical free energy methods for drug discovery: progress and challenges. , 2011, Current opinion in structural biology.

[49]  Juan R Perilla,et al.  Computing ensembles of transitions from stable states: Dynamic importance sampling , 2011, J. Comput. Chem..

[50]  Thomas Simonson,et al.  Free energy simulations come of age: protein-ligand recognition. , 2002, Accounts of chemical research.

[51]  P. A. Bash,et al.  Free energy calculations by computer simulation. , 1987, Science.

[52]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[53]  Peter T. Cummings,et al.  Precision and accuracy of staged free-energy perturbation methods for computing the chemical potential by molecular simulation , 1998 .

[54]  David L Mobley,et al.  Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. , 2009, Journal of molecular biology.

[55]  Justin L. MacCallum,et al.  Partitioning of Amino Acid Side Chains into Lipid Bilayers: Results from Computer Simulations and Comparison to Experiment , 2007, The Journal of general physiology.

[56]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.

[57]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[58]  W. L. Jorgensen,et al.  Monte Carlo simulation of differences in free energies of hydration , 1985 .

[59]  William L. Jorgensen,et al.  Accuracy of free energies of hydration using CM1 and CM3 atomic charges , 2004, J. Comput. Chem..

[60]  P A Kollman,et al.  What determines the strength of noncovalent association of ligands to proteins in aqueous solution? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[61]  E Weinan,et al.  Transition pathways in complex systems: Reaction coordinates, isocommittor surfaces, and transition tubes , 2005 .

[62]  Thomas B. Woolf,et al.  Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods , 2004, J. Comput. Chem..

[63]  Johan Åqvist,et al.  Calculation of absolute binding free energies for charged ligands and effects of long‐range electrostatic interactions , 1996, J. Comput. Chem..

[64]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[65]  D. N. Card,et al.  Monte Carlo Estimation of the Free Energy by Multistage Sampling , 1972 .

[66]  Jochen S. Hub,et al.  Mechanism of selectivity in aquaporins and aquaglyceroporins , 2008, Proceedings of the National Academy of Sciences.

[67]  Benoît Roux,et al.  Computation of Absolute Hydration and Binding Free Energy with Free Energy Perturbation Distributed Replica-Exchange Molecular Dynamics (FEP/REMD). , 2009, Journal of chemical theory and computation.

[68]  Volkhard Helms,et al.  Downhill binding energy surface of the barnase-barstar complex. , 2010, Biopolymers.

[69]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical review letters.

[70]  K. Schulten,et al.  Energetics of glycerol conduction through aquaglyceroporin GlpF , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Martin Karplus,et al.  Optimal estimates of free energies from multistate nonequilibrium work data. , 2006, Physical review letters.

[72]  T. Straatsma,et al.  Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration , 1994 .

[73]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[74]  Stefan Boresch,et al.  Absolute Binding Free Energies: A Quantitative Approach for Their Calculation , 2003 .

[75]  Christophe Chipot,et al.  Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables. , 2010, Journal of chemical theory and computation.

[76]  Peter L. Cummins,et al.  Molecular dynamics/free energy perturbation study on the relative affinities of the binding of reduced and oxidized NADP to dihydrofolate reductase , 1991 .

[77]  H. Grubmüller,et al.  Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics , 2011, Journal of chemical theory and computation.

[78]  Chris Oostenbrink,et al.  Single‐step perturbations to calculate free energy differences from unphysical reference states: Limits on size, flexibility, and character , 2003, J. Comput. Chem..

[79]  E. Vanden-Eijnden,et al.  A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations , 2006 .

[80]  Physikalische Gesellschaft Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations , 2005 .

[81]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[82]  P. A. Bash,et al.  Calculation of the relative change in binding free energy of a protein-inhibitor complex. , 1987, Science.

[83]  Grubmüller,et al.  Predicting slow structural transitions in macromolecular systems: Conformational flooding. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[84]  Y. Sugita,et al.  Multidimensional replica-exchange method for free-energy calculations , 2000, cond-mat/0009120.

[85]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[86]  Christophe Chipot,et al.  Good practices in free-energy calculations. , 2010, The journal of physical chemistry. B.

[87]  Christophe Chipot,et al.  Exploring the free-energy landscape of a short peptide using an average force. , 2005, The Journal of chemical physics.

[88]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[89]  John L. Klepeis,et al.  Anton, a special-purpose machine for molecular dynamics simulation , 2007, ISCA '07.

[90]  Régis Pomès,et al.  Calculation of absolute protein-ligand binding free energy using distributed replica sampling. , 2008, The Journal of chemical physics.

[91]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[92]  Toby W Allen,et al.  On the thermodynamic stability of a charged arginine side chain in a transmembrane helix , 2007, Proceedings of the National Academy of Sciences.

[93]  Wilfred F van Gunsteren,et al.  Enveloping distribution sampling: a method to calculate free energy differences from a single simulation. , 2007, The Journal of chemical physics.

[94]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[95]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[96]  Martin Almlöf,et al.  Free energy calculations and ligand binding. , 2003, Advances in protein chemistry.

[97]  Alan E. Mark,et al.  Estimating the Relative Free Energy of Different Molecular States with Respect to a Single Reference State , 1996 .

[98]  David L. Mobley,et al.  Chapter 4 Alchemical Free Energy Calculations: Ready for Prime Time? , 2007 .

[99]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[100]  P A Kollman,et al.  Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches. , 1990, Journal of molecular biology.

[101]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[102]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[103]  A T Brünger,et al.  Thermodynamics of protein-peptide interactions in the ribonuclease-S system studied by molecular dynamics and free energy calculations. , 1992, Biochemistry.

[104]  Wei Yang,et al.  Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems , 2008, Proceedings of the National Academy of Sciences.

[105]  William L. Jorgensen,et al.  Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water , 1988 .

[106]  Jonathan W. Essex,et al.  The development of replica-exchange-based free-energy methods , 2003 .

[107]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[108]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[109]  Klaus Schulten,et al.  Free-energy cost for translocon-assisted insertion of membrane proteins , 2011, Proceedings of the National Academy of Sciences.

[110]  Charles L. Brooks,et al.  Assessing the quality of absolute hydration free energies among CHARMM‐compatible ligand parameterization schemes , 2013, J. Comput. Chem..

[111]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[112]  Klaus Schulten,et al.  Steered Molecular Dynamics , 1999, Computational Molecular Dynamics.

[113]  David L. Mobley,et al.  Alchemical Free Energy Calculations : Ready for Prime Time ? , 2016 .

[114]  Christophe Chipot,et al.  Standard binding free energies from computer simulations: What is the best strategy? , 2013, Journal of chemical theory and computation.

[115]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[116]  Jennifer L. Knight,et al.  Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent. , 2012, Journal of chemical theory and computation.

[117]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[118]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[119]  B. Roux,et al.  The Hidden Energetics of Ligand-Binding and Activation in a Glutamate Receptor , 2010, Nature Structural &Molecular Biology.

[120]  J. Hermans,et al.  The Free Energy of Xenon Binding to Myoglobin from Molecular Dynamics Simulation , 1986 .

[121]  Benoît Roux,et al.  Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations. , 2010, Journal of chemical theory and computation.

[122]  Ignacio J General A Note on the Standard State's Binding Free Energy. , 2010, Journal of chemical theory and computation.