TiO2 nanorod/nanotube interface reconstruction and synergistic role of oxygen vacancies and gold in H-Au-TiO2 NR/NT for photoelectrochemical bacterial inactivation and water splitting.

[1]  W. Chae,et al.  Tuning the surface states by in-situ Zr/Hf co-doping and MoO3 hole transport layer modification for boosting photoelectrochemical performance of hematite photoanode , 2023, Chemical Engineering Journal.

[2]  J. Jang,et al.  Influence of CoOx surface passivation and Sn/Zr-co-doping on the photocatalytic activity of Fe2O3 nanorod photocatalysts for bacterial inactivation and photo-Fenton degradation. , 2023, Chemosphere.

[3]  J. Jang,et al.  Unveiling the Synchronized Effect of Bulk and Surface Dual Modification of In Situ Nb-Doping and Microwave-Assisted Co(OH)x Cocatalyst for Boosting Photoelectrochemical Water Splitting of Fe2O3 Photoanodes , 2023, ACS Sustainable Chemistry & Engineering.

[4]  Cui Ying Toe,et al.  Engineering Defects in TiO2 for the Simultaneous Production of Hydrogen and Organic Products , 2023, Applied Catalysis B: Environmental.

[5]  E. Moon,et al.  Titanium dioxide incorporated in cellulose nanofibers with enhanced UV blocking performance by eliminating ROS generation , 2022, RSC advances.

[6]  E. Nyankson,et al.  Curcumin loaded Ag–TiO2-halloysite nanotubes platform for combined chemo-photodynamic therapy treatment of cancer cells , 2022, RSC advances.

[7]  W. Fang,et al.  Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites. , 2022, Journal of the American Chemical Society.

[8]  Y. Li,et al.  Visible-light-activated TiO2 photocatalysis regionally modified by SiO2 for lignin depolymerization , 2022, Materials Today Energy.

[9]  J. Jang,et al.  Gradient Si- and Ti-doped Fe2O3 hierarchical homojunction photoanode for efficient solar water splitting: Effect of facile microwave-assisted growth of Si-FeOOH on Ti-FeOOH nanocorals , 2022, Journal of Energy Chemistry.

[10]  J. Jang,et al.  Synergistic role of in-situ Zr-doping and cobalt oxide cocatalysts on photocatalytic bacterial inactivation and organic pollutants removal over template-free Fe2O3 nanorods. , 2022, Chemosphere.

[11]  S. Sagadevan,et al.  Advances in the strategies for enhancing the photocatalytic activity of TiO2: conversion from UV-light active to visible-light active photocatalyst , 2022, Inorganic Chemistry Communications.

[12]  Lichao Jia,et al.  Boosting the solar water oxidation performance of BiVO4 photoanode via non-stoichiometric ratio drived surface reconstruction , 2022, Journal of Power Sources.

[13]  W. Chae,et al.  Synchronized effect of in-situ Ti doping and microwave-assisted SiOx hole transport channel on ZnFe2O4 nanocoral arrays for efficient photoelectrochemical water splitting , 2022, Applied Surface Science.

[14]  Wei Zhou,et al.  Recent progress in defective TiO2 photocatalysts for energy and environmental applications , 2022, Renewable and Sustainable Energy Reviews.

[15]  M. Sitarz,et al.  Qualitative and semi-quantitative phase analysis of TiO2 thin layers by Raman imaging , 2022, Journal of Molecular Structure.

[16]  Raju Kumar Gupta,et al.  Defect State Modulation of TiO2 Nanostructures for Photocatalytic Abatement of Emerging Pharmaceutical Pollutant in Wastewater Effluent , 2021, Advanced Energy and Sustainability Research.

[17]  D. Benz,et al.  Dual promotional effect of CuxO clusters grown with atomic layer deposition on TiO2 for photocatalytic hydrogen production , 2021, Catalysis science & technology.

[18]  Wenchang Wang,et al.  A Three-Dimensional Branched TiO2 Photoanode with an Ultrathin Al2O3 Passivation Layer and a NiOOH Cocatalyst toward Photoelectrochemical Water Oxidation. , 2021, ACS applied materials & interfaces.

[19]  S. Patra,et al.  Pd Nanoparticle-Decorated Hydrogen Plasma-Treated TiO2 for Photoelectrocatalysis-Based Solar Energy Devices , 2020 .

[20]  R. Doong,et al.  A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation , 2020, RSC advances.

[21]  Yajun Zhang,et al.  Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting , 2020, Applied Catalysis B: Environmental.

[22]  Yejun Qiu,et al.  A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting , 2020 .

[23]  M. Nakarmi,et al.  Optical transitions in lysozyme mediated zinc oxide nanoparticles probed by deep UV photoluminescence , 2020 .

[24]  F. Gao,et al.  Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. , 2019, ACS applied materials & interfaces.

[25]  A. Naldoni,et al.  Excitation Wavelength- and Medium-Dependent Photoluminescence of Reduced Nanostructured TiO2 Films , 2019, The Journal of Physical Chemistry C.

[26]  Yin‐Hsuan Chang,et al.  Core–Shell Heterostructures of Rutile and Anatase TiO2 Nanofibers for Photocatalytic Solar Energy Conversion , 2019, ACS Applied Nano Materials.

[27]  A. Du,et al.  Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes. , 2019, Angewandte Chemie.

[28]  P. Schmuki,et al.  Optimized Spacing between TiO2Nanotubes for Enhanced Light Harvesting and Charge Transfer , 2018, ChemElectroChem.

[29]  Wei Sun,et al.  Cultivating crystal lattice distortion in IrO2via coupling with MnO2 to boost the oxygen evolution reaction with high intrinsic activity. , 2018, Chemical communications.

[30]  P. Zhang,et al.  Current Mechanistic Understanding of Surface Reactions over Water-Splitting Photocatalysts , 2017 .

[31]  H. Cachet,et al.  Influence of the anatase/rutile ratio on the charge transport properties of TiO2-NTs arrays studied by dual wavelength opto-electrochemical impedance spectroscopy. , 2017, Physical chemistry chemical physics : PCCP.

[32]  Hyungkyu Han,et al.  Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures. , 2017, Chemical Society reviews.

[33]  P. Maddalena,et al.  Photoluminescence Mechanisms in Anatase and Rutile TiO2 , 2017 .

[34]  N. Wu,et al.  Effects of Defects on Photocatalytic Activity of Hydrogen-Treated Titanium Oxide Nanobelts , 2017 .

[35]  J. Jang,et al.  Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance , 2016 .

[36]  A. Dey,et al.  In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties , 2016 .

[37]  Hyunwoong Park,et al.  Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2 , 2016 .

[38]  Riley E. Rex,et al.  Spectroelectrochemical Photoluminescence of Trap States in H-Treated Rutile TiO2 Nanowires: Implications for Photooxidation of Water , 2016 .

[39]  Gang Li,et al.  N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity , 2015 .

[40]  G. Mul,et al.  Ti3+-containing titania: Synthesis tactics and photocatalytic performance , 2015 .

[41]  Seonghwan Kim,et al.  Capacitive and oxidant generating properties of black-colored TiO2 nanotube array fabricated by electrochemical self-doping. , 2015, ACS applied materials & interfaces.

[42]  Satyajit Gupta,et al.  Nature-Inspired Tree-Like TiO2 Architecture: A 3D Platform for the Assembly of CdS and Reduced Graphene Oxide for Photoelectrochemical Processes , 2015 .

[43]  M. Sillanpää,et al.  A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. , 2014, Chemosphere.

[44]  N. Dimitrijević,et al.  Probing the Nature of Bandgap States in Hydrogen-Treated TiO2 Nanowires , 2013 .

[45]  X. Zhou,et al.  Reduction of Ti4+ to Ti3+ in Boron‐Doped BaTiO3 at Very Low Temperature , 2013 .

[46]  Ying Dai,et al.  Green synthetic approach for Ti3+ self-doped TiO(2-x) nanoparticles with efficient visible light photocatalytic activity. , 2013, Nanoscale.

[47]  F. Tian,et al.  RAMAN SPECTROSCOPY: A NEW APPROACH TO MEASURE THE PERCENTAGE OF ANATASE TIO2 EXPOSED (001) FACETS , 2012 .

[48]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[49]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[50]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[51]  S. Fujimoto,et al.  TiO2 Nanotubes – Annealing Effects on Detailed Morphology and Structure , 2010 .

[52]  Tao Wu,et al.  Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. , 2010, Journal of the American Chemical Society.

[53]  Zhifeng Zhou,et al.  XPS, AFM and nanoindentation studies of Ti1−xAlxN films synthesized by reactive unbalanced magnetron sputtering , 2003 .

[54]  Jin-Seung Jung,et al.  Electronic energy dynamics of photoexcited ternary Zintl phase LiSbTe2 and the distance estimation between trap sites , 2000 .

[55]  J. Grunwaldt,et al.  Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation , 1999 .

[56]  Juan Wu,et al.  Morphological Tuning Engineering of Pt@TiO2/Graphene Catalysts with Optimal Active Surface of Support for Boosting Catalytic Performance to Methanol Oxidation , 2022, Journal of Materials Chemistry A.

[57]  Xianzhi Fu,et al.  Comparison of the catalytic performance of Au/TiO2 prepared by in situ photo-deposition and deposition precipitation methods for CO oxidation at room temperature under visible light irradiation , 2021, Catalysis Science & Technology.

[58]  J. Jang,et al.  A systematic study of post-activation temperature dependence on photoelectrochemical water splitting of one-step synthesized FeOOH CF photoanodes with erratically loaded ZrO2 , 2021 .

[59]  G. He,et al.  Photoelectrochemical Properties of Ag/TiO2 Electrodes Constructed Using Vertically Oriented Two-Dimensional TiO2 Nanosheet Array Films , 2016 .

[60]  Y. Tong,et al.  Oxygen‐Deficient Hematite Nanorods as High‐Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors , 2014, Advanced materials.

[61]  Influence of ZnO Magnetron Sputtering on Controlled Buildout of Zirconium-Doped ZnFe2O4/Fe2O3 Heterojunction Photoanodes for Photoelectrochemical Water Splitting , 2022 .