Can the magnocellular pathway read? Evidence from studies of color

A review of the neurophysiological literature suggests that the magnocellular pathway has adequate spatial-frequency and contrast sensitivity to perceive text under normal contrast conditions (>10%) and also is suppressed by red light. Results from three experiments involving color and reading show that red light impairs reading performance under normal luminance contrast conditions. However in a fourth experiment, isoluminant color text, designed to selectively activate the parvocellular pathway, is easier to read under red light. These discrepant results suggest that the magnocellular pathway is the dominant visual pathway for text perception. Implications for reading models and developmental dyslexia are discussed.

[1]  V C Smith,et al.  Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[2]  G. Mangun,et al.  Developmental dyslexia: Passive visual stimulation provides no evidence for a magnocellular processing defect , 1996, Neuropsychologia.

[3]  A. Tellegen,et al.  in Psychological Science , 1996 .

[4]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[5]  D R Badcock,et al.  Low-Frequency Filtering and the Processing of Local—Global Stimuli , 1990, Perception.

[6]  K Knoblauch,et al.  Effects of chromatic and luminance contrast on reading. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[7]  T. Zeffiro,et al.  The possible relationship between visual deficits and dyslexia. , 1999, Journal of Learning Disabilities.

[8]  G. Legge Sustained and transient mechanisms in human vision: Temporal and spatial properties , 1978, Vision Research.

[9]  B. Skottun The magnocellular deficit theory of dyslexia. , 1997, Trends in neurosciences.

[10]  Ishihara Shinobu,et al.  Ishihara's tests for colour deficiency : the series of plates designed as a test for colour deficiency , 1999 .

[11]  H. Kucera,et al.  Computational analysis of present-day American English , 1967 .

[12]  D. Heeger,et al.  Functional Magnetic Resonance Imaging of Early Visual Pathways in Dyslexia , 1998, The Journal of Neuroscience.

[13]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[14]  G E Legge,et al.  Psychophysics of reading. IV. Wavelength effects in normal and low vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[15]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[16]  B. B. Lee,et al.  Receptive field structure in the primate retina , 1996, Vision Research.

[17]  Mary M. Conte,et al.  Visual evoked potentials in dyslexics and normals: Failure to find a difference in transient or steady-state responses , 1993, Visual Neuroscience.

[18]  H. Hughes,et al.  Global Precedence, Spatial Frequency Channels, and the Statistics of Natural Images , 1996, Journal of Cognitive Neuroscience.

[19]  C W Eriksen,et al.  Information processing in visual search: A continuous flow conception and experimental results , 1979, Perception & psychophysics.

[20]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[21]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G E Legge,et al.  Psychophysics of reading. XI. Comparing color contrast and luminance contrast. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[23]  M. Livingstone,et al.  Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Stein,et al.  Visual motion sensitivity in dyslexia: evidence for temporal and energy integration deficits , 2000, Neuropsychologia.

[25]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[26]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[27]  V. Perry,et al.  The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina , 1991, Neuroscience.

[28]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[29]  W. Slaghuis,et al.  Spatio-temporal contrast sensitivity, coherent motion, and visible persistence in developmental dyslexia , 1999, Vision Research.

[30]  Barry B. Lee,et al.  Chapter 7 New views of primate retinal function , 1990 .

[31]  A. Stockman,et al.  The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches , 1999, Vision Research.

[32]  P. Cornelissen,et al.  Coherent motion detection and letter position encoding , 1998, Vision Research.

[33]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[34]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[35]  G. Legge,et al.  Psychophysics of reading—I. Normal vision , 1985, Vision Research.

[36]  W. Merigan,et al.  Spatial resolution across the macaque retina , 1990, Vision Research.

[37]  B. Skottun,et al.  The Possible Relationship Between Visual Deficits and Dyslexia , 1999, Journal of learning disabilities.

[38]  Skottun Bc The magnocellular deficit theory of dyslexia. , 1997 .

[39]  B. Breitmeyer,et al.  Recent models and findings in visual backward masking: A comparison, review, and update , 2000, Perception & psychophysics.

[40]  J. Stein,et al.  To see but not to read; the magnocellular theory of dyslexia , 1997, Trends in Neurosciences.

[41]  Joshua I. Breier,et al.  Effects of background color on reaction time to stimuli varying in size and contrast: Inferences about human M channels , 1994, Vision Research.

[42]  D. Macleod,et al.  Flicker photometric study of chromatic adaption: selective suppression of cone inputs by colored backgrounds. , 1981, Journal of the Optical Society of America.

[43]  C. Blakemore,et al.  Organization and post‐natal development of the monkey's lateral geniculate nucleus. , 1986, The Journal of physiology.

[44]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[45]  WH Merigan,et al.  Chromatic and achromatic vision of macaques: role of the P pathway , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  Kristen Pammer,et al.  The influence of color on transient system activity: Implications for dyslexia research , 2001, Perception & psychophysics.

[47]  Chikashi Michimata,et al.  Effects of Background Color on the Global and Local Processing of Hierarchically Organized Stimuli , 1999, Journal of Cognitive Neuroscience.

[48]  James L. McClelland On the time relations of mental processes: An examination of systems of processes in cascade. , 1979 .

[49]  F. M. D. Monasterio Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .

[50]  M. Williams,et al.  Effective interventions for reading disability. , 1992, Journal of the American Optometric Association.

[51]  D. Pelli,et al.  The role of spatial frequency channels in letter identification , 2002, Vision Research.

[52]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[54]  M F Huque,et al.  Some comments on frequently used multiple endpoint adjustment methods in clinical trials. , 1997, Statistics in medicine.

[55]  Bruno G. Breitmeyer,et al.  Effects of isoluminant-background color on metacontrast and stroboscopic motion: Interactions between sustained (P) and transient (M) channels , 1990, Vision Research.

[56]  B. Skottun,et al.  The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity , 2000, Vision Research.

[57]  A. Jenner,et al.  Magnocellular Visual Deficits Affect Temporal Processing of Dyslexics , 1993, Annals of the New York Academy of Sciences.

[58]  David J Heeger,et al.  Psychophysical evidence for a magnocellular pathway deficit in dyslexia , 1998, Vision Research.

[59]  P. Lachenbruch Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .

[60]  K. Pammer,et al.  Isolating the M(y)-cell response in dyslexia using the spatial frequency doubling illusion , 2001, Vision Research.

[61]  B. Breitmeyer,et al.  Colored overlays for visual perceptual deficits in children with reading disability and attention deficit/hyperactivity disorder: are they differentially effective? , 1998, Journal of clinical and experimental neuropsychology.

[62]  J. Krüger,et al.  Stimulus dependent colour specificity of monkey lateral geniculate neurones , 1977, Experimental Brain Research.

[63]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[64]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[65]  M. Versino,et al.  Visual evoked potential abnormalities in dyslexic children. , 2001, Functional neurology.

[66]  R. Solman,et al.  Colour‐mediated grouping effects in good and disabled readers , 1991, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[67]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[68]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  B. B. Lee,et al.  Visual resolution of macaque retinal ganglion cells. , 1988, The Journal of physiology.

[70]  R Shapley,et al.  Visual sensitivity and parallel retinocortical channels. , 1990, Annual review of psychology.

[71]  C. Stromeyer,et al.  Colour adaptation modifies the long‐wave versus middle‐wave cone weights and temporal phases in human luminance (but not red‐green) mechanism. , 1997, The Journal of physiology.

[72]  B. Breitmeyer Unmasking visual masking: a look at the "why" behind the veil of the "how". , 1980, Psychological review.

[73]  R. Woods,et al.  Abnormal processing of visual motion in dyslexia revealed by functional brain imaging , 1996, Nature.

[74]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[75]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[76]  Barry B. Lee,et al.  Temporal sensitivity of macaque ganglion cells to lights of different chromaticity , 1994 .

[77]  Rosen,et al.  Developmental Dyslexia: Neural, Cognitive, And Genetic Mechanisms , 1996 .

[78]  V. Perry,et al.  Visual effects of damage to P ganglion cells in macaques , 1992, Visual Neuroscience.

[79]  Mark S. Seidenberg,et al.  PSYCHOLOGICAL SCIENCE IN THE PUBLIC INTEREST HOW PSYCHOLOGICAL SCIENCE INFORMS THE TEACHING OF READING , 2022 .

[80]  J. Hogben,et al.  Effects of a red background on magnocellular functioning in average and specifically disabled readers , 1996, Vision Research.