Breakthroughs on tailoring pervaporation membranes for water desalination: A review.

Due to the increase in worldwide population and urbanization, water scarcity is today one of the tough challenges of society. To date, several ongoing initiatives and strategies are aiming to find feasible alternatives to produce drinking water. Seawater desalination is addressed as a latent alternative to solve such an issue. When dealing with desalination, membrane-based technologies (such as reverse osmosis, membrane distillation, pervaporation, among others) have been successfully proposed. Pervaporation (PV) is likely the membrane operation with the less permeation rate but providing high rejection of salts. Thereby, "membranologists" are extensively working in developing new suitable membranes for pervaporation desalination. Therefore, the goal of this review paper is to elucidate and provide a comprehensive outlook of the most recent works (over the last 5-years) at developing new concepts of membranes (e.g. ultra-thin, mixed matrix/composite and inorganic) for desalination, as well as the relevant strategies in fabricating enhanced PV membranes. At this point, an important emphasis has been paid to the relevant insights in the field. This paper also addresses some principles of PV and the main drawbacks of the technique and its membranes. Through reviewing the literature, the future trends, needs, and recommendations for the new researchers are given.

[1]  Li Li,et al.  High performance hydrophilic pervaporation composite membranes for water desalination , 2014 .

[2]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[3]  J. D. Costa,et al.  Interlayer-free P123 carbonised template silica membranes for desalination with reduced salt concentration polarisation , 2015 .

[4]  Seth M. Cohen Modifying MOFs: new chemistry, new materials , 2010 .

[5]  P. Mizsey,et al.  Distillation contra pervaporation: Comprehensive investigation of isobutanol-water separation , 2018, Journal of Cleaner Production.

[6]  A. Huang,et al.  Synthesis of novel graphene oxide-polyimide hollow fiber membranes for seawater desalination , 2018 .

[7]  E. Drioli,et al.  Poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes: Effect of membrane composition on pervaporation separation of ethanol/cyclohexane mixture , 2010 .

[8]  Bart Van der Bruggen,et al.  Pervaporation as a tool in chemical engineering: a new era? , 2014 .

[9]  D. D’Alessandro,et al.  Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks , 2018, Chemical science.

[10]  Qinzhuo Wang,et al.  Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation , 2018, Desalination.

[11]  Bing Cao,et al.  High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications , 2015 .

[12]  K. M. Gupta,et al.  Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes , 2016 .

[13]  F. U. Nigiz Preparation of high-performance graphene nanoplate incorporated polyether block amide membrane and application for seawater desalination , 2017 .

[14]  Jaap F. Vente,et al.  High-temperature pervaporation performance of ceramic-supported polyimide membranes in the dehydration of alcohols , 2008 .

[15]  K. Christensen,et al.  Advances in biopolymer-based membrane preparation and applications , 2018, Journal of Membrane Science.

[16]  C. Téllez,et al.  Graphene oxide – Filled polyimide membranes in pervaporative separation of azeotropic methanol–MTBE mixtures , 2019, Separation and Purification Technology.

[17]  S. M. Kuznicki,et al.  Natural zeolite clinoptilolite-phosphate composite Membranes for water desalination by pervaporation , 2014 .

[18]  Qinzhuo Wang,et al.  Preparation, characterization and performance of sulfonated poly(styrene-ethylene/butylene-styrene) block copolymer membranes for water desalination by pervaporation , 2016 .

[19]  B. Cao,et al.  Tailoring the molecular structure of crosslinked polymers for pervaporation desalination , 2020, Nature Communications.

[20]  Keith Scott,et al.  Handbook of Industrial Membranes , 1995 .

[21]  S. Khondaker,et al.  Graphene based materials: Past, present and future , 2011 .

[22]  W. Kaminski,et al.  Water desalination by pervaporation – Comparison of energy consumption , 2018 .

[23]  A. H. Korayem,et al.  New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane , 2020 .

[24]  Ahmad Fauzi Ismail,et al.  Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane—Current development, challenges and future prospects , 2012 .

[25]  M. Duke,et al.  Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes , 2016, Scientific Reports.

[26]  Kai Xu,et al.  Synthesis of graphene oxide/polyimide mixed matrix membranes for desalination , 2017 .

[27]  B. Bruggen,et al.  Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions , 2020 .

[28]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[29]  C. Téllez,et al.  Pervaporation-Assisted Esterification Reactions by Means of Mixed Matrix Membranes , 2018, Industrial & Engineering Chemistry Research.

[30]  Kai Xu,et al.  Covalent synthesis of three-dimensional graphene oxide framework (GOF) membrane for seawater desalination , 2016 .

[31]  Q. Zhang,et al.  Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes , 2013 .

[32]  M. Eddaoudi,et al.  Metal–Organic Framework Membranes: From Fabrication to Gas Separation , 2018, Crystals.

[33]  M. Sinha,et al.  pH-Responsive Membranes , 2021 .

[34]  Seth M. Cohen,et al.  Metal–organic frameworks for membrane-based separations , 2016 .

[35]  R. Castro‐Muñoz,et al.  Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation , 2020, Frontiers in Chemistry.

[36]  Zongli Xie,et al.  Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering , 2019, Journal of Membrane Science.

[37]  Xianshe Feng,et al.  Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation , 2020 .

[38]  M. Tsapatsis,et al.  Zeolite membranes - a review and comparison with MOFs. , 2015, Chemical Society reviews.

[39]  Richard W. Baker,et al.  Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data , 2010 .

[40]  P. Budd,et al.  The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes , 2019, BMC Chemical Engineering.

[41]  R. Castro‐Muñoz,et al.  Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds , 2018 .

[42]  R. Castro‐Muñoz,et al.  New Trends in Biopolymer-Based Membranes for Pervaporation , 2019, Molecules.

[43]  Gongpin Liu,et al.  Ultrathin two-dimensional MXene membrane for pervaporation desalination , 2018 .

[44]  Sanjay G. Chaudhri,et al.  Preparation of ultra-thin poly(vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater , 2015 .

[45]  PUYAM S Singh,et al.  Fabrication of efficient pervaporation desalination membrane by reinforcement of poly(vinyl alcohol)–silica film on porous polysulfone hollow fiber , 2018 .

[46]  S. Smart,et al.  Mesoporous TiO2 based membranes for water desalination and brine processing , 2015 .

[47]  Andrew G. Livingston,et al.  Energy consumption for desalination — A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes , 2016 .

[48]  R. Castro‐Muñoz,et al.  Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation , 2018, Membranes.

[49]  Tejraj M. Aminabhavi,et al.  Functionalized Graphene Sheets Embedded in Chitosan Nanocomposite Membranes for Ethanol and Isopropanol Dehydration via Pervaporation , 2014 .

[50]  D. Deamer,et al.  Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers , 1997 .

[51]  Noreddine Ghaffour,et al.  Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres , 2017, Scientific Reports.

[52]  Gang Zhang,et al.  Covalent organic frameworks for membrane separation. , 2019, Chemical Society reviews.

[53]  S. M. Kuznicki,et al.  Pervaporative desalination of water using natural zeolite membranes , 2012 .

[54]  R. Castro‐Muñoz,et al.  Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status , 2017 .

[55]  T. Aminabhavi,et al.  Preyssler type heteropolyacid-incorporated highly water-selective sodium alginate-based inorganic–organic hybrid membranes for pervaporation dehydration of ethanol , 2010 .

[56]  Netramani Sagar,et al.  Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India , 2017 .

[57]  Dihua Wu,et al.  Pervaporative desalination of high-salinity water , 2018, Chemical Engineering Research and Design.

[58]  B. Van der Bruggen,et al.  110th Anniversary: Cellulose Nanocrystals as Organic Nanofillers for Cellulose Triacetate Membranes Used for Desalination by Pervaporation , 2019, Industrial & Engineering Chemistry Research.

[59]  B. Cao,et al.  Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes , 2018 .

[60]  Cheng Cheng,et al.  Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly(vinylalcohol) for efficient pervaporation desalination , 2017 .

[61]  J. Motuzas,et al.  High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications , 2015 .

[62]  J. Motuzas,et al.  Rapid thermal treatment of interlayer-free ethyl silicate 40 derived membranes for desalination , 2016 .

[63]  E. Drioli,et al.  Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. , 2019, Nanoscale.

[64]  Ankit M. Kansara,et al.  Cetyltrimethylammonium bromide–silica membrane for seawater desalination through pervaporation , 2015, Bulletin of Materials Science.

[65]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[66]  L. Tayo,et al.  Investigation of salt penetration mechanism in hydrolyzed polyacrylonitrile asymmetric membranes for pervaporation desalination , 2019, Desalination.

[67]  Peter Mizsey,et al.  Novel hybrid separation processes based on pervaporation for THF recovery , 2007 .

[68]  B. Bruggen,et al.  Effect of solvent on the morphology and performance of cellulose triacetate membrane/cellulose nanocrystal nanocomposite pervaporation desalination membranes , 2020 .

[69]  Kai Xu,et al.  Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination , 2017 .

[70]  J. Hou,et al.  Composite PVA/PVDF pervaporation membrane for concentrated brine desalination: Salt rejection, membrane fouling and defect control , 2017 .

[71]  B. Cao,et al.  Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes , 2019, Journal of Membrane Science.

[72]  Wanqin Jin,et al.  Graphene-based membranes. , 2015, Chemical Society reviews.

[73]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[74]  É. Favre,et al.  Improved Energy Efficiency of a Hybrid Pervaporation/Distillation Process for Acetic Acid Production: Identification of Target Membrane Performances by Simulation , 2014 .

[75]  Jianhua Zhang,et al.  Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation , 2018, International journal of environmental research and public health.

[76]  Ziheng Wang,et al.  Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation , 2020 .

[77]  C. Téllez,et al.  Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes , 2019, Journal of Membrane Science.

[78]  J. C. Jansen,et al.  Strategy for scale-up of SBS pervaporation membranes for ethanol recovery from diluted aqueous solutions , 2017 .

[79]  A. Huang,et al.  Seeding-free synthesis of zeolite FAU membrane for seawater desalination by pervaporation , 2016 .

[80]  H. Kita,et al.  The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane , 2001 .

[81]  Chen Zhou,et al.  Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance , 2019, Desalination.

[82]  J. Lai,et al.  Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability , 2005 .

[83]  Zongli Xie,et al.  2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination , 2020 .

[84]  Toshinori Tsuru,et al.  Development of Ethenylene-Bridged Organosilica Membranes for Desalination Applications , 2016 .

[85]  Huayong Zhang,et al.  Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination , 2019, Journal of Membrane Science.

[86]  R. B. James,et al.  Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water–ethanol separation , 2013 .

[87]  Joon Ha Kim,et al.  Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network , 2009 .

[88]  Lin Li,et al.  Suppressing Salt Transport through Composite Pervaporation Membranes for Brine Desalination , 2017 .

[89]  Junquan Meng,et al.  High Flux Direct Contact Pervaporation Membranes for Desalination. , 2019, ACS applied materials & interfaces.

[90]  Chris Dotremont,et al.  Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol , 2004 .

[91]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[92]  J. Hou,et al.  Pinning Down the Water Transport Mechanism in Graphene Oxide Pervaporation Desalination Membranes , 2019, Industrial & Engineering Chemistry Research.

[93]  B. Cao,et al.  Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination , 2018, Petroleum Science.

[94]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[95]  J. Motuzas,et al.  Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation , 2017 .

[96]  Pierre Lochon,et al.  Industrial state-of-the-art of pervaporation and vapour permeation in the western countries , 2002 .

[97]  Kai Xu,et al.  Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination , 2016 .

[98]  E. Drioli,et al.  Matrimid®5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation , 2018, Separation and Purification Technology.

[99]  P. Mizsey,et al.  Pervaporative desalination of concentrated brine solution employing crosslinked PVA/silicate nanoclay membranes , 2020 .

[100]  P. Mizsey,et al.  Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance , 2019, Separation and Purification Technology.

[101]  B. Bolto,et al.  Desalination by pervaporation: A review , 2016 .

[102]  B. Cao,et al.  Fabrication of High Performance Pervaporation Desalination Composite Membranes by Optimizing the Support Layer Structures , 2018, Industrial & Engineering Chemistry Research.

[103]  B. Cao,et al.  High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination , 2019, Environmental technology.

[104]  Junquan Meng,et al.  Compatibilizing hydrophilic and hydrophobic polymers via spray coating for desalination , 2020, Journal of Materials Chemistry A.

[105]  Lin Zhao,et al.  High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination , 2015 .

[106]  E. Drioli,et al.  Progress of Nanocomposite Membranes for Water Treatment , 2018, Membranes.

[107]  Pankaj Sharma,et al.  Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and hi , 2011 .

[108]  A. Cassano,et al.  Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review , 2020 .