Mechanisms of amino acid polycondensation on silica and alumina surfaces

[1]  B. Luke,et al.  Theoretical investigation of the role of clay edges in prebiotic peptide bond formation , 1988, Origins of life and evolution of the biosphere.

[2]  J. C. Erickson,et al.  Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment , 1980, Journal of Molecular Evolution.

[3]  N. Lahav,et al.  A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers , 1980, Journal of Molecular Evolution.

[4]  J. Lawless,et al.  The role of metal ions in chemical evolution: Polymerization of alanine and glycine in a cation-exchanged clay environment , 1979, Journal of Molecular Evolution.

[5]  M. Paecht-Horowitz,et al.  The polymerization of amino acid adenylates on sodium-montmorillonite with preadsorbed polypeptides , 2005, Origins of life and evolution of the biosphere.

[6]  N. E. Podkletnov,et al.  New data on abiogenic synthesis of prebiological compounds in volcanic processes , 1981, Origins of life.

[7]  K. Dose Chemical and catalytical properties of thermal polymers of amino acids (proteinoids) , 2004, Origins of life.

[8]  R. Crawford,et al.  Model studies of competing hydrolysis and epimerization of some tetrapeptides of interest in amino acid racemization studies in geochronology , 1988 .

[9]  D. White,et al.  Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals. , 1985, Spectrochimica acta. Part A: Molecular spectroscopy.

[10]  Robert H. White Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C , 1984, Nature.

[11]  Joseph L. Walter,et al.  The Infrared Spectra of Complex Molecules , 1982 .

[12]  N. Lahav,et al.  Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. , 1978, Science.

[13]  D. L. Rohlfing,et al.  The thermal polymerization of amino acids in the presence of sand. , 1976, Bio Systems.

[14]  A. Brack Polymerisation en phase aqueuse d'acides amines sur des argiles , 1976, Clay Minerals.

[15]  W. Sachtler,et al.  Infrared spectra of some amino acids adsorbed on silica and on silica-supported nickel , 1974 .

[16]  W. Sachtler,et al.  The infrared spectrum of glycine chemisorbed by supported nickel , 1972 .

[17]  J. Oró,et al.  Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite , 1971, Nature.

[18]  M. Low,et al.  Infrared study of adsorption in situ at the liquid-solid interface , 1969 .

[19]  R. P. Young Infrared spectroscopic studies of adsorption and catalysis. Part 3. Carboxylic acids and their derivatives adsorbed on silica , 1969 .

[20]  R. Greenler,et al.  Infrared Study of the Adsorption of Methanol and Ethanol on Magnesium Oxide , 1962 .

[21]  L. J. Bellamy The infra-red spectra of complex molecules , 1962 .

[22]  G. Grodsky,et al.  On the Sublimation of Amino Acids and Peptides , 1955 .

[23]  R. Newman,et al.  The Infrared Spectra of N‐Acetylglycine and Diketopiperazine in Polarized Radiation at 25° and at −185°C , 1951 .

[24]  J. D. Bernal,et al.  The Physical Basis of Life , 1949 .