Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model

Abstract The overall thermal–mechanical properties of a fibrous composite out of an elastic deformation range can be simply simulated using a recently developed micromechanics model, the Bridging Model. Only the in situ constituent fiber and matrix properties of the composite and the fiber volume fraction are required in the simulation. This general yet easy-to-implement micromechanics model is reviewed and summarized in the present paper. Application of the model to predict various properties of unidirectional laminae and multidirectional laminates, including thermoelastic behavior, elasto-plastic response, ultimate failure strength, strength at elevated temperature, and fatigue strength and S–N curve, is demonstrated. It is suggested that use of the bridging model, appropriately calibrated with experimental data, can therefore inform composite design by identifying suitable constituent materials, their contents, and their geometrical arrangements. Some technical issues regarding applications of the bridging model are also addressed.

[1]  Mn Nahas,et al.  Survey of Failure and Post-Failure Theories of Laminated Fiber-Renforced Composites , 1986 .

[2]  John C. Halpin,et al.  Primer on Composite Materials Analysis , 1984 .

[3]  Michael J. Verrilli,et al.  Thermomechanical Fatigue Behavior of Materials , 1993 .

[4]  S. Teoh,et al.  Application of the Model of Leaf and Glaskin to Estimating the 3D Elastic Properties of Knitted-fabric-reinforced Composites , 2000 .

[5]  G. Dvorak,et al.  Plasticity Analysis of Fibrous Composites , 1982 .

[6]  Jacob Aboudi,et al.  Micromechanical Analysis of Composites by the Method of Cells - Update , 1996 .

[7]  Zheng-Ming Huang,et al.  Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites , 2001 .

[8]  Seeram Ramakrishna,et al.  Modeling the stress/strain behavior of a knitted fabric-reinforced elastomer composite , 2000 .

[9]  S. Ramakrishna,et al.  Unified Micromechanical Model for Estimating Elastic, Elasto-Plastic and Strength Behaviors of Knitted Fabric Reinforced Composites , 2000 .

[10]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[11]  P. R. DiGiovanni,et al.  Testing Technology of Metal Matrix Composites , 1988 .

[12]  Subra Suresh,et al.  Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape , 1991 .

[13]  P. D. Soden,et al.  A COMPARISON OF THE PREDICTIVE CAPABILITIES OF CURRENT FAILURE THEORIES FOR COMPOSITE LAMINATES , 1998 .

[14]  S. Suresh,et al.  Plastic deformation of continuous fiber-reinforced metal-matrix composites: Effects of fiber shape and distribution , 1990 .

[15]  George J. Dvorak,et al.  Inelastic Deformation of Composite Materials , 1991 .

[16]  J. Berthelot,et al.  Composite Materials: Mechanical Behavior and Structural Analysis , 1999 .

[17]  Richard Schapery Thermal Expansion Coefficients of Composite Materials Based on Energy Principles , 1968 .

[18]  C. Chamis,et al.  Critique on Theories Predicting Thermoelastic Properties of Fibrous Composites , 1968 .

[19]  J. N. Reddy,et al.  A Unified Formulation of Micromechanics Models of Fiber-Reinforced Composites , 1991 .

[20]  G. Dvorak,et al.  On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites , 1990 .

[21]  P. D. Soden,et al.  Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates , 1998 .

[22]  K. D. Chiu Ultimate Strengths of Laminated Composites , 1969 .

[23]  Z. Hashin,et al.  Fatigue failure of angle ply laminates , 1976 .

[24]  I. Daniel,et al.  Behavior of a Unidirectional Metal-Matrix Composite Under Thermomechanical Loading , 1996 .

[25]  Zheng-ming Huang Modeling Strength of Multidirectional Laminates under Thermo-Mechanical Loads , 2001 .

[26]  John W. Gillespie,et al.  Delaware composites design encyclopedia , 1989 .

[27]  C. Chamis Mechanics of Composite Materials: Past, Present and Future , 1989 .

[28]  Zheng-Ming Huang,et al.  Micromechanical modeling of fatigue strength of unidirectional fibrous composites , 2002 .

[29]  Zheng-ming Huang,et al.  Modeling the Tensile Behavior of Milano Rib Knit Fabric Composites , 2002 .

[30]  Z. Huang Simulation of inelastic response of multidirectional laminates based on stress failure criteria , 2000 .

[31]  T. Nicholas,et al.  Analysis of Thermomechanical Cyclic behavior of Unidirectional Metal Matrix Composites , 1993 .

[32]  Zheng-ming Huang,et al.  A Unified Micromechanical Model for the Mechanical Properties of Two Constituent Composite Materials. Part IV: Rubber-Elastic Behavior , 2000 .

[33]  Zheng-ming Huang Micromechanical life prediction for composite laminates , 2001 .

[34]  Zheng-ming Huang,et al.  Towards Automatic Designing of 2D Biaxial Woven and Braided Fabric Reinforced Composites , 2002 .

[35]  Y. Macheret,et al.  An experimental study of elastic-plastic behavior of a fibrous boron-aluminum composite , 1988 .

[36]  C. Bigelow Thermal residual stresses in a silicon-carbide/titanium [0/90] laminate , 1993 .

[37]  R. Gibson Principles of Composite Material Mechanics , 1994 .

[38]  S. Mall,et al.  Incorporating Fiber Damage in a Micromechanical Analysis of Metal Matrix Composite Laminates , 1996 .

[39]  Zvi Hashin,et al.  Effective thermal expansion coefficients and specific heats of composite materials , 1970 .

[40]  Zheng-ming Huang Strength formulae of unidirectional composites including thermal residual stresses , 2000 .

[41]  K. Matsuura,et al.  High Temperature Deformation and Fracture Behaviour of Continuous Alumina Fiber Reinforced Aluminum Composites with Different Fiber Orientation , 1997 .

[42]  Theodore Nicholas,et al.  Titanium Matrix Composites , 2020 .

[43]  Christos C. Chamis,et al.  Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites , 1988 .

[44]  A. Tay,et al.  A Micromechanical Approach to the Tensile Strength of a Knitted Fabric Composite , 1999 .

[45]  Seeram Ramakrishna,et al.  Micromechanical modeling approaches for the stiffness and strength of knitted fabric composites: a review and comparative study , 2000 .

[46]  Christos C. Chamis,et al.  A Unique Set of Micromechanics Equations for High-Temperature Metal Matrix Composites , 1988 .

[47]  Jonathan Awerbuch,et al.  Off-Axis Fatigue of Graphite/Epoxy Composite , 1981 .

[48]  George J. Dvorak,et al.  Elastic-plastic behavior of fibrous composites , 1979 .

[49]  Zheng-ming Huang,et al.  A Unified Micromechanical Model for the Mechanical Properties of Two Constituent Composite Materials. Part V: Laminate Strength , 2000 .

[50]  Z. Hashin Analysis of Properties of Fiber Composites With Anisotropic Constituents , 1979 .

[51]  Zheng-Ming Huang,et al.  The mechanical properties of composites reinforced with woven and braided fabrics , 2000 .

[52]  Z. Huang Tensile strength of fibrous composites at elevated temperature , 2000 .

[53]  Jacob Aboudi,et al.  Micromechanical Analysis of Composites by the Method of Cells , 1989 .

[54]  P. D. Soden,et al.  Influence of winding angle on the strength and deformation of filament-wound composite tubes subjected to uniaxial and biaxial loads , 1993 .

[55]  Zheng-ming Huang Micromechanical strength formulae of unidirectional composites , 1999 .

[56]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[57]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[58]  G. Sendeckyj,et al.  Fracture Behavior of Thornel 300/5208 Graphite-Epoxy Laminates—Part 1: Unnotched Laminates , 1975 .

[59]  Zheng-ming Huang Effect of Matrix Plasticity on Ultimate Strength of Composite Laminates , 2001 .

[60]  S. White,et al.  Stress analysis of fiber-reinforced composite materials , 1997 .

[61]  Jun Chen,et al.  Micromechanical characterization of nonlinear behavior of advanced polymer matrix composites , 1996 .