Continuation methods for nonnegative rank-1 approximation of nonnegative tensors
暂无分享,去创建一个
[1] Chun-Hua Guo,et al. A modified Newton iteration for finding nonnegative Z-eigenpairs of a nonnegative tensor , 2017, Numerical Algorithms.
[2] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[3] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[4] A. Uschmajew,et al. A new convergence proof for the higher-order power method and generalizations , 2014, 1407.4586.
[5] Charles Van Loan,et al. Block tensors and symmetric embeddings , 2010, ArXiv.
[6] Yueh-Cheng Kuo,et al. Continuation methods for computing Z-/H-eigenpairs of nonnegative tensors , 2017, J. Comput. Appl. Math..
[7] Madeleine Udell,et al. Why Are Big Data Matrices Approximately Low Rank? , 2017, SIAM J. Math. Data Sci..
[8] Tamara G. Kolda,et al. Temporal Analysis of Semantic Graphs Using ASALSAN , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[9] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[10] Chen Ling,et al. The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[11] Kung-Ching Chang,et al. Some variational principles for Z-eigenvalues of nonnegative tensors , 2013 .
[12] David F. Gleich,et al. Multilinear PageRank , 2014, SIAM J. Matrix Anal. Appl..
[13] Johan Håstad. Tensor Rank is NP-Complete , 1990, J. Algorithms.
[14] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[15] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[16] Kung-Ching Chang,et al. On eigenvalue problems of real symmetric tensors , 2009 .
[17] A. Raftery. A model for high-order Markov chains , 1985 .
[18] L. Qi. Eigenvalues and invariants of tensors , 2007 .
[19] Liqun Qi,et al. The Best Rank-One Approximation Ratio of a Tensor Space , 2011, SIAM J. Matrix Anal. Appl..
[20] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[21] Liqi Wang,et al. On the Global Convergence of the Alternating Least Squares Method for Rank-One Approximation to Generic Tensors , 2014, SIAM J. Matrix Anal. Appl..
[22] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[23] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[24] Guoyin Li,et al. The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..
[25] Guoyin Li,et al. Convergence rate analysis for the higher order power method in best rank one approximations of tensors , 2018, Numerische Mathematik.