Continuation methods for nonnegative rank-1 approximation of nonnegative tensors

[1]  Chun-Hua Guo,et al.  A modified Newton iteration for finding nonnegative Z-eigenpairs of a nonnegative tensor , 2017, Numerical Algorithms.

[2]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[3]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[4]  A. Uschmajew,et al.  A new convergence proof for the higher-order power method and generalizations , 2014, 1407.4586.

[5]  Charles Van Loan,et al.  Block tensors and symmetric embeddings , 2010, ArXiv.

[6]  Yueh-Cheng Kuo,et al.  Continuation methods for computing Z-/H-eigenpairs of nonnegative tensors , 2017, J. Comput. Appl. Math..

[7]  Madeleine Udell,et al.  Why Are Big Data Matrices Approximately Low Rank? , 2017, SIAM J. Math. Data Sci..

[8]  Tamara G. Kolda,et al.  Temporal Analysis of Semantic Graphs Using ASALSAN , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[9]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[10]  Chen Ling,et al.  The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[11]  Kung-Ching Chang,et al.  Some variational principles for Z-eigenvalues of nonnegative tensors , 2013 .

[12]  David F. Gleich,et al.  Multilinear PageRank , 2014, SIAM J. Matrix Anal. Appl..

[13]  Johan Håstad Tensor Rank is NP-Complete , 1990, J. Algorithms.

[14]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[15]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[16]  Kung-Ching Chang,et al.  On eigenvalue problems of real symmetric tensors , 2009 .

[17]  A. Raftery A model for high-order Markov chains , 1985 .

[18]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[19]  Liqun Qi,et al.  The Best Rank-One Approximation Ratio of a Tensor Space , 2011, SIAM J. Matrix Anal. Appl..

[20]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[21]  Liqi Wang,et al.  On the Global Convergence of the Alternating Least Squares Method for Rank-One Approximation to Generic Tensors , 2014, SIAM J. Matrix Anal. Appl..

[22]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[23]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[24]  Guoyin Li,et al.  The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..

[25]  Guoyin Li,et al.  Convergence rate analysis for the higher order power method in best rank one approximations of tensors , 2018, Numerische Mathematik.