A composite method for the determination of the chirality of single walled carbon nanotubes

An approach to the unambiguous determination of the conformation of individual single walled nanotubes utilizing high‐resolution transmission electron microscopy and digital image processing is described. The exit plane wave of single walled nanotubes restored from a focal series of images is used in a stepwise characterization procedure utilizing both the phase of the real space restoration and its Fourier transform. A combination of these complementary characterization steps yields an accurate measurement of the chiral vector for an individual nanotube.

[1]  Philip G. Collins,et al.  Nanotube Nanodevice , 1997 .

[2]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[3]  Angus I. Kirkland,et al.  A new method for the determination of the wave aberration function for high resolution TEM , 2002 .

[4]  Malcolm L. H. Green,et al.  Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb 2 O 3 /single-walled nanotube composite , 2001 .

[5]  Tsuneya Ando,et al.  Physics of Carbon Nanotubes , 2003 .

[6]  W. O. Saxton,et al.  Multiple beam tilt microscopy for super resolved imaging , 1997 .

[7]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[8]  R. Meyer Quantitative Automated Object Wave Restoration in High-Resolution Electron Microscopy , 2002 .

[9]  P. Goodman,et al.  Numerical evaluations of N‐beam wave functions in electron scattering by the multi‐slice method , 1974 .

[10]  J. M. Cowley,et al.  The scattering of electrons by atoms and crystals. I. A new theoretical approach , 1957 .

[11]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[12]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[13]  Pavel Nikolaev,et al.  ELECTRON NANO-DIFFRACTION STUDY OF CARBON SINGLE-WALLED NANOTUBE ROPES , 1997 .

[14]  H. Kataura,et al.  Helicity and packing of single-walled carbon nanotubes studied by electron nanodiffraction , 1997 .

[15]  P. Lambin,et al.  Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes , 2000 .

[16]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[17]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[18]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[19]  M. Burghard,et al.  Polarized raman spectroscopy on isolated single-wall carbon nanotubes. , 2000, Physical review letters.

[20]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[21]  P. Ajayan,et al.  Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis , 1993 .

[22]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[23]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[24]  K. Sattler,et al.  Scanning tunneling microscopy of single‐shell nanotubes of carbon , 1994 .

[25]  R. Smalley,et al.  Electron diffraction study of single-wall carbon nanotubes , 1998 .

[26]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[27]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[28]  P. Lambin,et al.  Electron diffraction and microscopy of single-wall carbon nanotube bundles produced by different methods , 2002 .

[29]  W. O. Saxton,et al.  A new method for the determination of the wave aberration function for high-resolution TEM.; 2. Measurement of the antisymmetric aberrations. , 2004, Ultramicroscopy.

[30]  L. Bourgeois,et al.  Atomic resolution of single-walled carbon nanotubes using a field emission high-resolution transmission electron microscope , 1999 .

[31]  P. Lambin,et al.  Quantitative theory of diffraction by carbon nanotubes , 1997 .

[32]  W. O. Saxton Observation of lens aberrations for very high‐resolution electron microscopy. I. Theory , 1995 .