Asynchronous Lagrangian scenario decomposition

We present a distributed asynchronous algorithm for solving two-stage stochastic mixed-integer programs (SMIP) using scenario decomposition, aimed at industrial-scale instances of the stochastic unit commitment (SUC) problem. The algorithm is motivated by large differences in run times observed among scenario subproblems of SUC instances, which can result in inefficient use of distributed computing resources by synchronous parallel algorithms. Our algorithm performs dual iterations asynchronously using a block-coordinate subgradient descent method which allows performing block-coordinate updates using delayed information, while candidate primal solutions are recovered from the solutions of scenario subproblems using heuristics. We present a high performance computing implementation of the asynchronous algorithm, detailing the operations performed by each parallel process and the communication mechanisms among them. We conduct numerical experiments using SUC instances of the Western Electricity Coordinating Council system with up to 1000 scenarios and of the Central Western European system with up to 120 scenarios. We also conduct numerical experiments on generic SMIP instances from the SIPLIB library (DCAP and SSLP). The results demonstrate the general applicability of the proposed algorithm and its ability to solve industrial-scale SUC instances within operationally acceptable time frames. Moreover, we find that an equivalent synchronous parallel algorithm would leave cores idle up to 80.4% of the time on our realistic test instances, an observation which underscores the need for designing asynchronous optimization schemes in order to fully exploit distributed computing on real world applications.

[1]  Michael C. Caramanis,et al.  Co-Optimization of Power and Reserves in Dynamic T&D Power Markets With Nondispatchable Renewable Generation and Distributed Energy Resources , 2016, Proceedings of the IEEE.

[2]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[3]  Stephen J. Wright,et al.  An asynchronous parallel stochastic coordinate descent algorithm , 2013, J. Mach. Learn. Res..

[4]  Angelia Nedic,et al.  Subgradient methods for convex minimization , 2002 .

[5]  Christoph Helmberg,et al.  A Parallel Bundle Framework for Asynchronous Subspace Optimization of Nonsmooth Convex Functions , 2014, SIAM J. Optim..

[6]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[7]  Suvrajeet Sen,et al.  A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems , 2004, Manag. Sci..

[8]  John R. Birge,et al.  Stochastic Unit Commitment Problem (あいまいさと不確実性を含む状況の数理的意思決定 研究集会報告集) , 2002 .

[9]  Nikolaos V. Sahinidis,et al.  A finite branch-and-bound algorithm for two-stage stochastic integer programs , 2004, Math. Program..

[10]  P. Carpentier,et al.  Stochastic optimization of unit commitment: a new decomposition framework , 1996 .

[11]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[12]  Anthony Papavasiliou,et al.  Applying High Performance Computing to Transmission-Constrained Stochastic Unit Commitment for Renewable Energy Integration , 2015, IEEE Transactions on Power Systems.

[13]  Antonio Frangioni,et al.  Large-scale Unit Commitment under uncertainty , 2014, 4OR.

[14]  Anthony Papavasiliou,et al.  Renewable Energy Integration in Zonal Markets , 2017 .

[15]  G. Ch. Pflug,et al.  Asynchronous nested optimization algorithms and their parallel implementation , 2001, Wuhan University Journal of Natural Sciences.

[16]  Victor M. Zavala,et al.  Algorithmic innovations and software for the dual decomposition method applied to stochastic mixed-integer programs , 2017, Mathematical Programming Computation.

[17]  Horand I. Gassmann,et al.  A Comprehensive Input Format for Stochastic Linear Programs , 2001, Ann. Oper. Res..

[18]  Peter Richtárik,et al.  Smooth minimization of nonsmooth functions with parallel coordinate descent methods , 2013, Modeling and Optimization: Theory and Applications.

[19]  Alper Atamtürk,et al.  A polyhedral study of production ramping , 2016, Math. Program..

[20]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[21]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[22]  Stephen J. Wright Coordinate descent algorithms , 2015, Mathematical Programming.

[23]  Shabbir Ahmed,et al.  Dynamic Capacity Acquisition and Assignment under Uncertainty , 2003, Ann. Oper. Res..

[24]  Anthony Papavasiliou,et al.  Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network , 2013, Oper. Res..

[25]  David L. Woodruff,et al.  PySP: modeling and solving stochastic programs in Python , 2012, Mathematical Programming Computation.

[26]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[27]  Ralf Gollmer,et al.  Stochastic Power Generation Unit Commitment in Electricity Markets: A Novel Formulation and a Comparison of Solution Methods , 2009, Oper. Res..

[28]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[29]  Shabbir Ahmed,et al.  A scenario decomposition algorithm for 0-1 stochastic programs , 2013, Oper. Res. Lett..

[30]  O. Alsaç,et al.  DC Power Flow Revisited , 2009, IEEE Transactions on Power Systems.

[31]  Mikael Amelin,et al.  Probabilistic day-ahead CHP operation scheduling , 2015, 2015 IEEE Power & Energy Society General Meeting.

[32]  Mihai Anitescu,et al.  Parallel distributed-memory simplex for large-scale stochastic LP problems , 2013, Comput. Optim. Appl..

[33]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[34]  Dimitri P. Bertsekas,et al.  Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..

[35]  Shabbir Ahmed,et al.  Improving the Integer L-Shaped Method , 2016, INFORMS J. Comput..

[36]  Horand I. Gassmann,et al.  2. The SMPS Format for Stochastic Linear Programs , 2005, Applications of Stochastic Programming.

[37]  SkjellumAnthony,et al.  A high-performance, portable implementation of the MPI message passing interface standard , 1996 .

[38]  Jérôme Malick,et al.  Decomposition algorithm for large-scale two-stage unit-commitment , 2016, Ann. Oper. Res..

[39]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[40]  K. I. M. McKinnon,et al.  A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems , 2017, Eur. J. Oper. Res..

[41]  Laurence A. Wolsey,et al.  Two “well-known” properties of subgradient optimization , 2009, Math. Program..

[42]  Y. Ermoliev Stochastic quasigradient methods and their application to system optimization , 1983 .

[43]  Susana Scheimberg,et al.  Inexact Bundle Methods for Two-Stage Stochastic Programming , 2011, SIAM J. Optim..

[44]  Christopher Ré,et al.  Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care , 2015, NIPS.

[45]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[46]  Lluís-Miquel Munguía,et al.  PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[47]  Shabbir Ahmed,et al.  Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[48]  Cosmin G. Petra,et al.  On Parallelizing Dual Decomposition in Stochastic Integer Programming , 2012, Oper. Res. Lett..

[49]  Shabbir Ahmed Corrigendum to "A scenario decomposition algorithm for 0-1 stochastic programs" [Oper. Res. Lett. 41(6) (2013) 565-569] , 2015, Oper. Res. Lett..

[50]  David L. Woodruff,et al.  Toward scalable stochastic unit commitment , 2015 .