Seismic pulse propagation with constant Q and stable probability distributions

The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with index of stability determined by the order of the fractional time derivative in the evolution equation.

[1]  Giorgio Ranalli,et al.  Rheology of the earth , 1987 .

[2]  D. Yuen,et al.  Consequences of experimental transient rheology , 1987 .

[3]  ELASTIC RADIATION FROM A SOURCE IN A MEDIUM WITH AN ALMOST FREQUENCY-INDEPENDENT Q , 1981 .

[4]  J. C. Savage,et al.  The relation between the Lomnitz and Futterman theories of internal friction , 1975 .

[5]  D. Yuen,et al.  On transient rheology and glacial isostasy , 1986 .

[6]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[7]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[8]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[9]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[10]  F. Mainardi,et al.  On a general class of constant-Q solids , 1982 .

[11]  H. Kolsky,et al.  LXXI. The propagation of stress pulses in viscoelastic solids , 1956 .

[12]  F. R. Norwood,et al.  IUTAM symposium : nonlinear waves in solids , 1995 .

[13]  Brian J. Mitchell,et al.  ANELASTIC STRUCTURE AND EVOLUTION OF THE CONTINENTAL CRUST AND UPPER MANTLE FROM SEISMIC SURFACE WAVE ATTENUATION , 1995 .

[14]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[15]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[16]  D. L. Anderson,et al.  Importance of Physical Dispersion in Surface Wave and Free Oscillation Problems: Review (Paper 6R0680) , 1977 .

[17]  E. Strick Implications of Jeffreys‐Lomnitz Transient Creep , 1984 .

[18]  D. L. Anderson,et al.  Physical mechanisms of seismic‐wave attenuation , 1970 .

[19]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[20]  Socio Michele Caputo The Green function of the diffusion of fluids in porous media with memory , 1996 .

[21]  Bernard Budiansky,et al.  Measures of dissipation in viscoelastic media , 1978 .

[22]  Ari Ben-Menahem,et al.  Seismic waves and sources , 1981 .

[23]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[24]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[25]  G. Shilov,et al.  PARTICULAR TYPES OF GENERALIZED FUNCTIONS , 1964 .

[26]  E. Strick,et al.  The Determination of Q, Dynamic Viscosity and Transient Creep Curves from Wave Propagation Measurements* , 1967 .

[27]  C. W. Nelson,et al.  Anelastic properties of the Earth , 1966 .

[28]  E. Strick,et al.  A PREDICTED PEDESTAL EFFECT FOR PULSE PROPAGATION IN CONSTANT‐Q SOLIDS , 1970 .

[29]  M. Caputo Modern rheology and electric induction: multivalued index of refraction, splitting of eigenvalues and fatigue , 1996 .

[30]  Andreas Kreis,et al.  Viscoelastic pulse propagation and stable probability distributions , 1986 .

[31]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[32]  F. Mainardi,et al.  Wave front expansions for transient viscoelastic waves , 1975 .

[33]  Michele Caputo,et al.  Vibrations of an infinite plate with a frequency independent Q , 1976 .

[34]  M. Caputo Generalized rheology and geophysical consequences , 1985 .

[35]  G. Müller,et al.  Rheological models and interpretation of postglacial uplift , 1989 .

[36]  Michele Caputo,et al.  A model for the fatigue in elastic materials with frequency independent Q , 1979 .

[37]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[38]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[39]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[40]  D. Yuen,et al.  The effects of transient rheology on the interpretation of lower mantle viscosity , 1985 .

[41]  Francesco Mainardi,et al.  The time fractional diffusion-wave equation , 1995 .

[42]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[43]  Massimiliano Giona,et al.  Fractional diffusion equation for transport phenomena in random media , 1992 .

[44]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[45]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[46]  J. W. Spencer Stress relaxations at low frequencies in fluid‐saturated rocks: Attenuation and modulus dispersion , 1981 .

[47]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[48]  R. Metzler,et al.  Fractional model equation for anomalous diffusion , 1994 .