Numerical modeling of mechanical wave propagation

The numerical modeling of mechanical waves is currently a fundamental tool for the study and investigation of their propagation in media with heterogeneous physical properties and/or complex geometry, as, in these cases, analytical methods are usually not applicable. These techniques are used in geophysics (geophysical interpretation, subsoil imaging, development of new methods of exploration), seismology (study of earthquakes, regional and global seismology, accurate calculation of synthetic seismograms), in the development of new methods for ultrasonic diagnostics in materials science (non-destructive methods) and medicine (acoustic tomography). In this paper we present a review of numerical methods that have been developed and are currently used. In particular we review the key concepts and pioneering ideas behind finite-difference methods, pseudospectral methods, finite-volume methods, Galerkin continuous and discontinuous finite-element methods (classical or based on spectral interpolation), and still others such as physics-compatible, and multiscale methods. We focus on their formulations in time domain along with the main temporal discretization schemes. We present the theory and implementation for some of these methods. Moreover, their computational characteristics are evaluated in order to aid the choice of the method for each practical situation.

[1]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[2]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .

[3]  George G. O'Brien,et al.  A Study of the Numerical Solution of Partial Differential Equations , 1950 .

[4]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[5]  L. Brillouin Wave propagation in periodic structures : electric filters and crystal lattices , 1953 .

[6]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[7]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[8]  J. J. Douglas On the Numerical Integration of $\frac{\partial ^2 u}{\partial x^2 } + \frac{\partial ^2 u}{\partial y^2 } = \frac{\partial u}{\partial t}$ by Implicit Methods , 1955 .

[9]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[10]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[11]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[12]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[13]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[14]  P. Lax,et al.  Systems of conservation laws , 1960 .

[15]  Difference methods for mixed boundary-value problems , 1960 .

[16]  M. Lees,et al.  Alternating Direction Methods for Hyperbolic Differential Equations , 1962 .

[17]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[18]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[19]  M. Gurtin,et al.  On the linear theory of viscoelasticity , 1962 .

[20]  A. A. Samarskii Local one-dimensional difference schemes for multi-dimensional hyperbolic equations in an arbitrary region☆ , 1964 .

[21]  J. Crank,et al.  Persistent discretization errors in partial differential equations of parabolic type , 1964, Comput. J..

[22]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[23]  Graeme Fairweather,et al.  A High Accuracy Alternating Direction Method for the Wave Equation , 1965 .

[24]  Andrew R. Mitchell,et al.  On the Instability of the Crank Nicholson Formula Under Derivative Boundary Conditions , 1966, Comput. J..

[25]  M. E. Hanson,et al.  Difference equations for two-dimensional elastic flow , 1968 .

[26]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[27]  Gurij Ivanovich Marchuk,et al.  Some application of splitting-up methods to the solution of mathematical physics problems , 1968 .

[28]  Z. Alterman,et al.  Propagation of elastic waves in layered media by finite difference methods , 1968 .

[29]  A. Rotenberg,et al.  Seismic waves in a quarter plane , 1969 .

[30]  A. R. Mitchell Computational methods in partial differential equations , 1969 .

[31]  Steven A. Orszag,et al.  Galerkin Approximations to Flows within Slabs, Spheres, and Cylinders , 1971 .

[32]  Steven A. Orszag,et al.  Comparison of Pseudospectral and Spectral Approximation , 1972 .

[33]  John Lysmer,et al.  A Finite Element Method for Seismology , 1972 .

[34]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[35]  S. McKee,et al.  High Accuracy A.D.I. Methods for Hyperbolic Equations with Variable Coefficients , 1973 .

[36]  T. Dupont $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations , 1973 .

[37]  Warwick D. Smith A nonreflecting plane boundary for wave propagation problems , 1974 .

[38]  R. M. Alford,et al.  ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION , 1974 .

[39]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[40]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[41]  Seismic waves in a wedge , 1975, Bulletin of the Seismological Society of America.

[42]  Isaac Fried,et al.  Finite element mass matrix lumping by numerical integration with no convergence rate loss , 1975 .

[43]  M. Ciment,et al.  Higher order compact implicit schemes for the wave equation , 1975 .

[44]  E. Lindman “Free-space” boundary conditions for the time dependent wave equation , 1975 .

[45]  E. Tonti The reason for analogies between physical theories , 1976 .

[46]  R. Madariaga Dynamics of an expanding circular fault , 1976, Bulletin of the Seismological Society of America.

[47]  Thomas J. R. Hughes,et al.  Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics , 1976 .

[48]  M. E. Hanson,et al.  A boundary condition for significantly reducing boundary reflections with a Lagrangian mesh , 1976 .

[49]  G. A. Baker Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .

[50]  Dan Loewenthal,et al.  INSTABILITY OF FINITE DIFFERENCE SCHEMES DUE TO BOUNDARY CONDITIONS IN ELASTIC MEDIA , 1976 .

[51]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[52]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[53]  J. Z. Zhu,et al.  The finite element method , 1977 .

[54]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[55]  Albert C. Reynolds,et al.  Boundary conditions for the numerical solution of wave propagation problems , 1978 .

[56]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[57]  James G. Berryman,et al.  Long-wave elastic anisotropy in transversely isotropic media , 1979 .

[58]  Bernard P. Zeigler,et al.  The foundations of cybernetics: By F. H. George. Gordon and Beach, London, 1977. , 1979 .

[59]  S. Serbin Rational approximations of trigonometric matrices with application to second-order systems of differential equations , 1979 .

[60]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[61]  Steven M. Serbin,et al.  An approximation theorem for second-order evolution equations , 1980 .

[62]  David F. Griffiths,et al.  Analysis of error growth for explicit difference schemes in conduction–convection problems , 1980 .

[63]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .

[64]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[65]  Jenö Gazdag,et al.  Modeling of the acoustic wave equation with transform methods , 1981 .

[66]  Ralph A. Stephen,et al.  An implicit finite-difference formulation of the elastic wave equation , 1982 .

[67]  T. Belytschko,et al.  Dispersion analysis of finite element semidiscretizations of the two‐dimensional wave equation , 1982 .

[68]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[69]  On some unconditionally stable, higher order methods for the numerical solution of the structural dynamics equations , 1982 .

[70]  Effects of internal finite element node placement on field problem solutions , 1982 .

[71]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[72]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[73]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[74]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[75]  M. Olsson Finite element, modal co-ordinate analysis of structures subjected to moving loads , 1985 .

[76]  R. G. Keys Absorbing boundary conditions for acoustic media , 1985 .

[77]  B. O'CONNOR,et al.  The group velocity of some numerical schemes , 1985 .

[78]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[79]  L. Thomsen Weak elastic anisotropy , 1986 .

[80]  R. Kosloff,et al.  Absorbing boundaries for wave propagation problems , 1986 .

[81]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[82]  Eli Turkel,et al.  A fourth-order accurate finite-difference scheme for the computation of elastic waves , 1986 .

[83]  F. Santosa,et al.  Accuracy of a Lax–Wendroff scheme for the wave equation , 1986 .

[84]  Anthony T. Patera,et al.  An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry , 1986 .

[85]  H. Tal-Ezer,et al.  A pseudospectral Legendre method for hyperbolic equations with an improved stability condition , 1986 .

[86]  H. Tal-Ezer,et al.  Spectral methods in time for hyperbolic equations , 1986 .

[87]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[88]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[89]  John B. Bell,et al.  A modified equation approach to constructing fourth order methods for acoustic wave propagation , 1987 .

[90]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .

[91]  Anthony T. Patera,et al.  A Legendre spectral element method for the Stefan problem , 1987 .

[92]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[93]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[94]  B. Fornberg The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .

[95]  James S. Sochacki,et al.  Absorbing boundary conditions and surface waves , 1987 .

[96]  Endre Süli,et al.  Convergence of a Finite-Difference Scheme for Second-Order Hyperbolic Equations with Variable Coefficients , 1987 .

[97]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[98]  Zoltan A. Der,et al.  Free-boundary conditions of arbitrary polygonal topography in a two-dimensional explicit elastic finite-difference scheme , 1988 .

[99]  L. Trefethen,et al.  THE EIGENVALUES OF SECOND-ORDER SPECTRAL DIFFERENTIATION MATRICES* , 1988 .

[100]  Patrick Joly,et al.  Numerical Diffraction by a Uniform Grid , 1988 .

[101]  Patrick Joly,et al.  Absorbing boundary conditions for Rayleigh waves , 1988 .

[102]  José M. Carcione,et al.  WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID , 1988 .

[103]  Bengt Fornberg,et al.  The pseudospectral method; accurate representation of interfaces in elastic wave calculations , 1988 .

[104]  C. Randall,et al.  Absorbing boundary condition for the elastic wave equation , 1988 .

[105]  Ronnie Kosloff,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1988 .

[106]  Kumar K. Tamma,et al.  An explicit velocity based Lax-Wendroff/Taylor-Galerkin methodology of computation for the dynamics of structures , 1988 .

[107]  Rosemary A. Renaut,et al.  Stability of wide-angle absorbing boundary conditions for the wave equation , 1989 .

[108]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[109]  Peter Moczo,et al.  Finite-difference technique for SH-waves in 2-D media using irregular grids-application to the seismic response problem , 1989 .

[110]  Alfred Behle,et al.  NUMERICAL SOLUTION OF THE ACOUSTIC AND ELASTIC WAVE EQUATIONS BY A NEW RAPID EXPANSION METHOD1 , 1989 .

[111]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[112]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[113]  Dan Kosloff,et al.  A modified Chebyshev pseudospectral method with an O(N –1 ) time step restriction , 1993 .

[114]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[115]  A. Kamel,et al.  A stability checking procedure for finite-difference schemes with boundary conditions in acoustic media , 1989 .

[116]  George A. McMechan,et al.  Absorbing boundary conditions for 3-D acoustic and elastic finite-difference calculations , 1989 .

[117]  T. Dupont,et al.  A Priori Estimates for Mixed Finite Element Approximations of Second Order Hyperbolic Equations with , 1996 .

[118]  Francisco J. Serón,et al.  FINITE-ELEMENT METHOD FOR ELASTIC WAVE PROPAGATION , 1990 .

[119]  B. Fornberg High-order finite differences and the pseudospectral method on staggered grids , 1990 .

[120]  D. Kosloff,et al.  Solution of the equations of dynamic elasticity by a Chebychev spectral method , 1990 .

[121]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[122]  José M. Carcione,et al.  An accurate and efficient scheme for wave propagation in linear viscoelastic media , 1990 .

[123]  C. Edward High-order (space And Time) Finite-difference Modeling of the Elastic Wave Equation , 1990 .

[124]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[125]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[126]  D. Givoli Non-reflecting boundary conditions , 1991 .

[127]  Mengzhao Qin,et al.  Canonical Runge-Kutta-Nyström (RKN) methods for second order ordinary differential equations , 1991 .

[128]  David Kessler,et al.  Elastic wave propagation using cylindrical coordinates , 1991 .

[129]  L. Trefethen,et al.  Two results on polynomial interpolation in equally spaced points , 1991 .

[130]  P. W. Sharp,et al.  Some Nystro¨m pairs for the general second-order initial-value problem , 1992 .

[131]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[132]  Cord Jastram,et al.  ACOUSTIC MODELLING ON A GRID OF VERTICALLY VARYING SPACING1 , 1992 .

[133]  Alfred Behle,et al.  Multi-domain Chebyshev-Fourier method for the solution of the equations of motion of dynamic elasticity , 1992 .

[134]  Peter M. Pinsky,et al.  Finite element dispersion analysis for the three‐dimensional second‐order scalar wave equation , 1992 .

[135]  Y. Kondoh,et al.  Kernel optimum nearly-analytical discretization (KOND) algorithm applied to parabolic and hyperbolic equations , 1992 .

[136]  D. Sheen Second-order absorbing boundary conditions for the wave equation in a rectangular domain , 1993 .

[137]  Peter Moczo,et al.  Testing four elastic finite-difference schemes for behavior at discontinuities , 1993 .

[138]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[139]  Jintai Chung,et al.  A new family of explicit time integration methods for linear and non‐linear structural dynamics , 1994 .

[140]  Joakim O. Blanch,et al.  Galerkin-wavelet modeling of wave propagation: Optimal finite-difference stencil design , 1994 .

[141]  Peter Mora,et al.  Finite differences on minimal grids , 1994 .

[142]  J. Carcione The wave equation in generalized coordinates , 1994 .

[143]  Bent O. Ruud,et al.  2D finite‐difference elastic wave modelling including surface topography1 , 1994 .

[144]  P. Stoffa,et al.  Finite‐difference modeling in transversely isotropic media , 1994 .

[145]  P. Joly,et al.  On the stability analysis of boundary conditions for the wave equation by energy methods. Part I: the homogeneous case , 1994 .

[146]  Géza Seriani,et al.  LOW AND HIGH ORDER FINITE ELEMENT METHOD: EXPERIENCE IN SEISMIC MODELING , 1994 .

[147]  Shailendra K. Sharan,et al.  Wave motion and its dispersive properties in a finite element model with distortional elements , 1994 .

[148]  Cord Jastram,et al.  Elastic modelling on a grid with vertically varying spacing1 , 1994 .

[149]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[150]  Patrick Joly,et al.  Higher-order finite elements with mass-lumping for the 1D wave equation , 1994 .

[151]  J. Carcione Time-dependent boundary conditions for the 2-D linear anisotropic-viscoelastic wave equation , 1994 .

[152]  P. Bar-Yoseph,et al.  Space-time spectral element method for solution of second-order hyperbolic equations , 1994 .

[153]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[154]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[155]  Emmanuel Dormy,et al.  Numerical simulation of elastic wave propagation using a finite volume method , 1995 .

[156]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .

[157]  D. Givoli,et al.  Nonreflecting boundary conditions based on Kirchhoff-type formulae , 1995 .

[158]  A. Khaliq,et al.  Parallel LOD methods for second order time dependent PDEs , 1995 .

[159]  Jochen Fröhlich,et al.  A Pseudospectral Chebychev method for the 2D Wave Equation with Domain Stretching and Absorbing Boun , 1995 .

[160]  Ekkehart Tessmer,et al.  3-D seismic modelling of general material anisotropy in the presence of the free surface by a Chebyshev spectral method , 1995 .

[161]  Charalambos G. Makridakisj High-order fully discrete methods for the equations of elastic wave propagation with absorbing boundary conditions , 1995 .

[162]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[163]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[164]  José M. Carcione,et al.  SOME ASPECTS OF THE PHYSICS AND NUMERICAL MODELING OF BIOT COMPRESSIONAL WAVES , 1995 .

[165]  I. Tsvankin P-wave signatures and notation for transversely isotropic media: An overview , 1996 .

[166]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[167]  Dimitri Komatitsch,et al.  Tensorial formulation of the wave equation for modelling curved interfaces , 1996 .

[168]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[169]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[170]  Ezio Faccioli,et al.  Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations , 1996 .

[171]  G. McMechan,et al.  Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation , 1996 .

[172]  Géza Seriani,et al.  A Parallel Spectral Element Method for Acoustic Wave Modeling , 1997 .

[173]  Johan O. A. Robertsson,et al.  A modified Lax-Wendroff correction for wave propagation in media described by Zener elements , 1997 .

[174]  Qing Huo Liu,et al.  The perfectly matched layer for acoustic waves in absorptive media , 1997 .

[175]  Elena Zampieri,et al.  Numerical approximation of elastic waves equations by implicit spectral methods , 1997 .

[176]  Tamar Schlick,et al.  A Family of Symplectic Integrators: Stability, Accuracy, and Molecular Dynamics Applications , 1997, SIAM J. Sci. Comput..

[177]  Isaac Harari,et al.  Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics , 1997 .

[178]  Ashley F. Emery,et al.  Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements , 1997 .

[179]  José M. Carcione,et al.  Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures , 1997, Bulletin of the Seismological Society of America.

[180]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[181]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[182]  K. Morton On the Analysis of Finite Volume Methods for Evolutionary Problems , 1998 .

[183]  Bent O. Ruud,et al.  3-D finite-difference elastic wave modeling including surface topography , 1998 .

[184]  Géza Seriani,et al.  3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor , 1998 .

[185]  Robert J. Geller,et al.  Optimally accurate second-order time-domain finite difference scheme for the elastic equation of motion: one-dimensional case , 1998 .

[186]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[187]  E. Tessmer,et al.  Efficient finite‐difference modelling of seismic waves using locally adjustable time steps , 1998 .

[188]  B. Kennett,et al.  Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method , 1998 .

[189]  Alfio Quarteroni,et al.  Generalized Galerkin approximations of elastic waves with absorbing boundary conditions , 1998 .

[190]  K. Mallick,et al.  Nonreflecting boundary condition in finite-element formulation for an elastic wave equation , 1998 .

[191]  Z. Jianfeng Quadrangle‐grid velocity–stress finite difference method for poroelastic wave equations , 1999 .

[192]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[193]  Nils-Erik Wiberg,et al.  Adaptive finite element procedures for linear and non‐linear dynamics , 1999 .

[194]  M. Christon The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation , 1999 .

[195]  Heiner Igel,et al.  Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method , 1999 .

[196]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[197]  D Komatitsch,et al.  CASTILLO-COVARRUBIAS JM, SANCHEZ-SESMA FJ. THE SPECTRAL ELEMENT METHOD FOR ELASTIC WAVE EQUATIONS-APPLICATION TO 2-D AND 3-D SEISMIC PROBLEMS , 1999 .

[198]  J. Carcione Staggered mesh for the anisotropic and viscoelastic wave equation , 1999 .

[199]  Zhang Jianfeng,et al.  P–SV-wave propagation in heterogeneous media: grid method , 1999 .

[200]  Ashley F. Emery,et al.  An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation , 1999 .

[201]  W. A. Mulder,et al.  Spurious modes in finite-element discretizations of the wave equation may not be all that bad , 1999 .

[202]  Hiroyuki Fujiwara,et al.  3D finite-difference method using discontinuous grids , 1999, Bulletin of the Seismological Society of America.

[203]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[204]  Ladislav Halada,et al.  3D Fourth-Order Staggered-Grid Finite-Difference Schemes: Stability and Grid Dispersion , 2000 .

[205]  Robert J. Geller,et al.  Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media , 2000 .

[206]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[207]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[208]  D. Komatitsch,et al.  Simulation of anisotropic wave propagation based upon a spectral element method , 2000 .

[209]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[210]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[211]  A. F. Emery,et al.  The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements , 2000 .

[212]  Ekkehart Tessmer,et al.  Seismic finite-difference modeling with spatially varying time steps , 2000 .

[213]  An Iterative Time-Stepping Method for Solving First-Order Time Dependent Problems and Its Application to the Wave Equation , 2000 .

[214]  S. Bojinski,et al.  An approach to upscaling for seismic waves in statistically isotropic heterogeneous elastic media , 2000 .

[215]  Joël Piraux,et al.  A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example , 2001 .

[216]  Enzo Tonti,et al.  A DIRECT DISCRETE FORMULATION FOR THE WAVE EQUATION , 2001 .

[217]  Roland Martin,et al.  WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES , 2001 .

[218]  Mikhail Shashkov,et al.  Fourth- and sixth-order conservative finite difference approximations of the divergence and gradient , 2001 .

[219]  Jim Douglas,et al.  IMPROVED ACCURACY FOR LOCALLY ONE-DIMENSIONAL METHODS FOR PARABOLIC EQUATIONS , 2001 .

[220]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[221]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[222]  Beatrice Pelloni,et al.  Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations , 2001 .

[223]  Enzo Tonti,et al.  A DIRECT DISCRETE FORMULATION FOR THE WAVE EQUATION , 2001 .

[224]  Elastic wave propagation in heterogeneous anisotropic media using the lumped finite‐element method , 2002 .

[225]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[226]  H. Hernández-Figueroa,et al.  Novel numerical method for the analysis of 2D photonic crystals: the cell method. , 2002, Optics express.

[227]  Anne Gelb,et al.  Absorbing Boundary Conditions of the Second Order for the Pseudospectral Chebyshev Methods for Wave Propagation , 2002, J. Sci. Comput..

[228]  Peter Moczo,et al.  Efficient Methods to Simulate Planar Free Surface in the 3D 4th-Order Staggered-Grid Finite-Difference Schemes , 2002 .

[229]  Patrick Joly,et al.  A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem , 2001, SIAM J. Numer. Anal..

[230]  J. Kristek,et al.  3D Heterogeneous Staggered-grid Finite-difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities , 2002 .

[231]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[232]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Frontmatter , 2002 .

[233]  J. Carcione,et al.  Seismic modelingSeismic modeling , 2002 .

[234]  Sérgio Adriano Moura Oliveira,et al.  A fourth‐order finite‐difference method for the acoustic wave equation on irregular grids , 2003 .

[235]  Qing Huo Liu,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2003 .

[236]  V. Grechka Effective media: A forward modeling view , 2003 .

[237]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction , 2003, Numerische Mathematik.

[238]  Mengzhao Qin,et al.  Symplectic Schemes for Birkhoffian System , 2003 .

[239]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis , 2003, Numerische Mathematik.

[240]  J. Kristek,et al.  Seismic-Wave Propagation in Viscoelastic Media with Material Discontinuities: A 3D Fourth-Order Staggered-Grid Finite-Difference Modeling , 2003 .

[241]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[242]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[243]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .

[244]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[245]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[246]  M. Tadi,et al.  Finite Volume Method for 2D Elastic Wave Propagation , 2004 .

[247]  H. Fujiwara,et al.  Finite-element Simulation of Seismic Ground Motion with a Voxel Mesh , 2004 .

[248]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[249]  Jacob Fish,et al.  Space?time multiscale model for wave propagation in heterogeneous media , 2004 .

[250]  Hiroyuki Fujiwara,et al.  Finite-element Simulation of Seismic Ground Motion with a Voxel Mesh , 2004 .

[251]  Piet J. van der Houwen,et al.  Splitting methods for second‐order initial value problems , 2004, Numerical Algorithms.

[252]  Dinghui Yang,et al.  An Optimal Nearly Analytic Discrete Method for 2D Acoustic and Elastic Wave Equations , 2004 .

[253]  Géza Seriani,et al.  Double-grid Chebyshev spectral elements for acoustic wave modeling , 2004 .

[254]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[255]  G. Gabard,et al.  Stability and accuracy of finite element methods for flow acoustics. I: general theory and application to one‐dimensional propagation , 2005 .

[256]  Xinming Zhang,et al.  A Wavelet Finite Element Method for 2‐D Wave Equation in the Fluid‐Saturated Porous Media , 2005 .

[257]  Olivier Vacus,et al.  Mathematical analysis of absorbing boundary conditions for the wave equation: the corner problem , 2004, Math. Comput..

[258]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[259]  Susan E. Minkoff,et al.  Operator Upscaling for the Acoustic Wave Equation , 2005, Multiscale Model. Simul..

[260]  Patrick Joly,et al.  An Error Analysis of Conservative Space-Time Mesh Refinement Methods for the One-Dimensional Wave Equation , 2005, SIAM J. Numer. Anal..

[261]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[262]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[263]  Luca F. Pavarino,et al.  Implicit spectral element methods and Neumann–Neumann preconditioners for acoustic waves , 2006 .

[264]  Francesca Rapetti,et al.  Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances , 2006, J. Sci. Comput..

[265]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[266]  Susan E. Minkoff,et al.  A Matrix Analysis of Operator-Based Upscaling for the Wave Equation , 2006, SIAM J. Numer. Anal..

[267]  Dan Givoli,et al.  FINITE ELEMENT FORMULATION WITH HIGH-ORDER ABSORBING BOUNDARY CONDITIONS FOR TIME-DEPENDENT WAVES , 2006 .

[268]  Jing-Bo Chen,et al.  Modeling the scalar wave equation with Nyström methods , 2006 .

[269]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[270]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[271]  Gunilla Kreiss,et al.  Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well-posedness, and Stability , 2006, SIAM J. Appl. Math..

[272]  Luca F. Pavarino,et al.  An explicit second order spectral element method for acoustic waves , 2006, Adv. Comput. Math..

[273]  Jean-Pierre Vilotte,et al.  Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids , 2006 .

[274]  R. A. Scott,et al.  Dispersive elastodynamics of 1D banded materials and structures: analysis , 2006 .

[275]  Wei Zhang,et al.  Traction image method for irregular free surface boundaries in finite difference seismic wave simulation , 2006 .

[276]  S. P. Oliveira,et al.  Optimal blended spectral-element operators for acoustic wave modeling , 2007 .

[277]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[278]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[279]  Jing-Bo Chen,et al.  High-order time discretizations in seismic modeling , 2007 .

[280]  Stefan Nilsson,et al.  Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation , 2007, SIAM J. Numer. Anal..

[281]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[282]  J. Marigo,et al.  Second order homogenization of the elastic wave equation for non-periodic layered media , 2007 .

[283]  M. Dumbser,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes — III. Viscoelastic attenuation , 2007 .

[284]  Dan Givoli,et al.  LOCAL HIGH-ORDER ABSORBING BOUNDARY CONDITIONS FOR TIME-DEPENDENT WAVES IN GUIDES , 2007 .

[285]  Michael Dumbser,et al.  Accurate Calculation of Fault-Rupture Models Using the High-Order Discontinuous Galerkin Method on Tetrahedral Meshes , 2007 .

[286]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[287]  Jean Virieux,et al.  Dynamic non-planar crack rupture by a finite volume method , 2006 .

[288]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[289]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[290]  Michael Dumbser,et al.  Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D , 2007 .

[291]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[292]  Warwick D. Smith The Application of Finite Element Analysis to Body Wave Propagation Problems , 2007 .

[293]  Michael Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - IV. Anisotropy , 2007 .

[294]  Seongjai Kim,et al.  High-order schemes for acoustic waveform simulation , 2007 .

[295]  Jim Douglas,et al.  Numerical methods for viscous and nonviscous wave equations , 2007 .

[296]  José M. Carcione,et al.  Wave fields in real media : wave propagation in anisotropic, anelastic, porous and electromagnetic media , 2007 .

[297]  Jeroen Tromp,et al.  Spectral-element and adjoint methods in seismology , 2008 .

[298]  Michael Dumbser,et al.  Discontinuous Galerkin methods for wave propagation in poroelastic media , 2008 .

[299]  Luis A. Dalguer,et al.  Modelling of rupture propagation using high‐order mimetic finite differences , 2008 .

[300]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[301]  J. Charles Gilbert,et al.  Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions , 2008 .

[302]  Jeroen Tromp,et al.  Spectral-element simulations of wave propagation in porous media: Finite-frequency sensitivity kernels based upon adjoint methods , 2008 .

[303]  Uri M. Ascher,et al.  Numerical Methods for Evolutionary Differential Equations , 2008 .

[304]  Dan Givoli,et al.  Computational Absorbing Boundaries , 2008 .

[305]  Mrinal K. Sen,et al.  The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion , 2008 .

[306]  Roland Martin,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media , 2008 .

[307]  Jürgen Geiser,et al.  Higher-Order Splitting Method for Elastic Wave Propagation , 2008, Int. J. Math. Math. Sci..

[308]  Dan Givoli,et al.  High-order local absorbing conditions for the wave equation: Extensions and improvements , 2008, J. Comput. Phys..

[309]  S. P. Oliveira,et al.  DFT MODAL ANALYSIS OF SPECTRAL ELEMENT METHODS FOR ACOUSTIC WAVE PROPAGATION , 2008 .

[310]  S. P. Oliveira,et al.  Dispersion analysis of spectral element methods for elastic wave propagation , 2008 .

[311]  Mrinal K. Sen,et al.  Finite‐difference modelling of S‐wave splitting in anisotropic media , 2008 .

[312]  Martin Käser,et al.  Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method , 2009 .

[313]  Julien Diaz,et al.  Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations , 2007, SIAM J. Sci. Comput..

[314]  Roland Martin,et al.  An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation , 2009 .

[315]  S. Dong,et al.  A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems , 2009 .

[316]  Martin Galis,et al.  A brief summary of some PML formulations and discretizations for the velocity-stress equation of seismic motion , 2009 .

[317]  Mark Ainsworth,et al.  Dispersive and Dissipative Behavior of the Spectral Element Method , 2009, SIAM J. Numer. Anal..

[318]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..

[319]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[320]  William W. Symes,et al.  Interface error analysis for numerical wave propagation , 2009 .

[321]  S. Christiansen,et al.  Finite element systems of differential forms , 2010, 1006.4779.

[322]  DFT modal analysis of spectral element methods for the 2D elastic wave equation , 2010, J. Comput. Appl. Math..

[323]  Robert L. Lowe,et al.  Numerical simulation of linear and nonlinear waves in hypoelastic solids by the CESE method , 2010 .

[324]  Georg Stadler,et al.  A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media , 2010, J. Comput. Phys..

[325]  Gordon Erlebacher,et al.  High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster , 2010, J. Comput. Phys..

[326]  Dan Givoli,et al.  High‐order absorbing boundary conditions incorporated in a spectral element formulation , 2010 .

[327]  Mrinal K. Sen,et al.  Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping , 2010 .

[328]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[329]  Olivier Bou Matar,et al.  Convolutional perfectly matched layer for elastic second-order wave equation. , 2010, The Journal of the Acoustical Society of America.

[330]  Jean-Jacques Marigo,et al.  2-D non-periodic homogenization of the elastic wave equation: SH case , 2010 .

[331]  Paul L. Stoffa,et al.  Time evolution of the wave equation using rapid expansion method , 2010 .

[332]  José M. Carcione,et al.  A generalization of the Fourier pseudospectral method , 2010 .

[333]  Asadollah Noorzad,et al.  Simulating 2D Waves Propagation in Elastic Solid Media Using Wavelet Based Adaptive Method , 2010, J. Sci. Comput..

[334]  Jean-Jacques Marigo,et al.  2-D non-periodic homogenization to upscale elastic media for P–SV waves , 2010 .

[335]  Martin Galis,et al.  Stable discontinuous staggered grid in the finite-difference modelling of seismic motion , 2010 .

[336]  V. Tcheverda,et al.  On the interface error analysis for finite difference wave simulation , 2010 .

[337]  Henri Calandra,et al.  A review of the spectral, pseudo‐spectral, finite‐difference and finite‐element modelling techniques for geophysical imaging , 2011 .

[338]  Bruno Lombard,et al.  Wave propagation across acoustic / Biot's media: a finite-difference method , 2011, 1109.3281.

[339]  S. P. Oliveira,et al.  EFFECT OF ELEMENT DISTORTION ON THE NUMERICAL DISPERSION OF SPECTRAL ELEMENT METHODS , 2011 .

[340]  Stanly Steinberg,et al.  A Discrete Vector Calculus in Tensor Grids , 2011, Comput. Methods Appl. Math..

[341]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[342]  Hans Z. Munthe-Kaas,et al.  Topics in structure-preserving discretization* , 2011, Acta Numerica.

[343]  D. Givoli,et al.  On the stability of the high-order Higdon Absorbing Boundary Conditions , 2011 .

[344]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..

[345]  J. Geiser Iterative Splitting Methods for Differential Equations , 2011 .

[346]  Zhi-Zhong Sun,et al.  Maximum norm error estimates of efficient difference schemes for second-order wave equations , 2011, J. Comput. Appl. Math..

[347]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[348]  Guoliang Qin,et al.  Implicit Chebyshev spectral element method for acoustics wave equations , 2011 .

[349]  Omar Ghattas,et al.  Analysis of an hp-Nonconforming Discontinuous Galerkin Spectral Element Method for Wave Propagation , 2012, SIAM J. Numer. Anal..

[350]  Francisco J. Sánchez-Sesma,et al.  A 3D hp‐adaptive discontinuous Galerkin method for modeling earthquake dynamics , 2012 .

[351]  Soon Jee Seol,et al.  Elastic modelling in tilted transversely isotropic media with convolutional perfectly matched layer boundary conditions , 2012 .

[352]  Paul L. Stoffa,et al.  Implicit finite-difference simulations of seismic wave propagation , 2012 .

[353]  Kenneth Duru,et al.  A Well-Posed and Discretely Stable Perfectly Matched Layer for Elastic Wave Equations in Second Order Formulation , 2012 .

[354]  Wensheng Zhang,et al.  Stability Conditions for Wave Simulation in 3-D Anisotropic Media with the Pseudospectral Method , 2012 .

[355]  J. Ampuero,et al.  Three‐dimensional dynamic rupture simulation with a high‐order discontinuous Galerkin method on unstructured tetrahedral meshes , 2012 .

[356]  A. Quarteroni,et al.  Non-conforming high order approximations of the elastodynamics equation , 2012 .

[357]  Jean-Pierre Vilotte,et al.  RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale , 2012 .

[358]  Kenneth Duru,et al.  On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides , 2012, J. Sci. Comput..

[359]  Klaus-Jürgen Bathe,et al.  A finite element method enriched for wave propagation problems , 2012 .

[360]  Maarten Hornikx,et al.  Analysis of the dissipation and dispersion properties of the multi-domain Chebyshev pseudospectral method , 2013, J. Comput. Phys..

[361]  Enzo Tonti,et al.  The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram , 2013 .

[362]  Wim A. Mulder,et al.  Local time stepping with the discontinuous Galerkin method for wave propagation in 3D heterogeneous media , 2013 .

[363]  Randall J. LeVeque,et al.  High-Resolution Finite Volume Modeling of Wave Propagation in Orthotropic Poroelastic Media , 2012, SIAM J. Sci. Comput..

[364]  Fabio Freschi,et al.  The Cell Method for Electrical Engineering and Multiphysics Problems - An Introduction , 2013, Lecture Notes in Electrical Engineering.

[365]  Chiara Smerzini,et al.  SPEED: SPectral Elements in Elastodynamics with Discontinuous Galerkin: a non‐conforming approach for 3D multi‐scale problems , 2013 .

[366]  L. T. Santos,et al.  On the elastic wave equation in weakly anisotropic VTI media , 2013 .

[367]  Z. Gürdal,et al.  Spectral formulation of finite element methods using Daubechies compactly-supported wavelets for elastic wave propagation simulation , 2013 .

[368]  Guillermo Miranda,et al.  Mimetic Discretization Methods , 2013 .

[369]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[370]  Eric T. Chung,et al.  Multiscale modeling of acoustic wave propagation in 2D media , 2014 .

[371]  J. Kristek,et al.  The Finite-Difference Modelling of Earthquake Motions: Basic mathematical-physical model , 2014 .

[372]  Martin Galis,et al.  The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures , 2014 .

[373]  J. Kristek,et al.  The Finite-Difference Modelling of Earthquake Motions: Earthquake source , 2014 .

[374]  Mauricio Hanzich,et al.  Mimetic seismic wave modeling including topography on deformed staggered grids , 2014 .

[375]  Herbert De Gersem,et al.  Mimetic discretization and higher order time integration for acoustic, electromagnetic and elastodynamic wave propagation , 2014, J. Comput. Appl. Math..

[376]  Kenneth Duru,et al.  Boundary Waves and Stability of the Perfectly Matched Layer for the Two Space Dimensional Elastic Wave Equation in Second Order Form , 2014, SIAM J. Numer. Anal..

[377]  Eric T. Chung,et al.  The Staggered DG Method is the Limit of a Hybridizable DG Method , 2014, SIAM J. Numer. Anal..

[378]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[379]  Vadim Lisitsa,et al.  Numerical study of the interface errors of finite-difference simulations of seismic waves , 2014 .

[380]  J. Carcione,et al.  A pseudospectral method for the simulation of 3-D ultrasonic and seismic waves in heterogeneous poroelastic borehole environments , 2014 .

[381]  Dinghui Yang,et al.  Symplectic stereomodelling method for solving elastic wave equations in porous media , 2014 .

[382]  Dan Givoli,et al.  The Double Absorbing Boundary method , 2014, J. Comput. Phys..

[383]  Enzo Tonti,et al.  Why starting from differential equations for computational physics? , 2014, J. Comput. Phys..

[384]  Webe João Mansur,et al.  A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis , 2014 .

[385]  José M. Carcione,et al.  Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives , 2014 .

[386]  Yijie Zhang,et al.  A 3D staggered-grid finite difference scheme for poroelastic wave equation , 2014 .

[387]  James Kaklamanos,et al.  Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites , 2015 .

[388]  Zhenguo Zhang,et al.  Elastic wave finite-difference simulation using discontinuous curvilinear grid with non-uniform time step: two-dimensional case , 2015 .

[389]  Paul Cupillard,et al.  Fast Fourier homogenization for elastic wave propagation in complex media , 2015 .

[390]  Marcus J. Grote,et al.  Runge-Kutta-Based Explicit Local Time-Stepping Methods for Wave Propagation , 2015, SIAM J. Sci. Comput..

[391]  Yang Liu,et al.  Application of the double absorbing boundary condition in seismic modeling , 2015, Applied Geophysics.

[392]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography , 2015 .

[393]  J Behrens,et al.  New computational methods in tsunami science , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[394]  Jian-Hua Wang,et al.  A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis , 2015 .

[395]  Eric T. Chung,et al.  A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory , 2015 .

[396]  J. Bin,et al.  An analysis of a discontinuous spectral element method for elastic wave propagation in a heterogeneous material , 2015 .

[397]  W. Mansur,et al.  Theory of equivalent staggered‐grid schemes: application to rotated and standard grids in anisotropic media , 2015 .

[398]  Alfio Quarteroni,et al.  Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation , 2015 .

[399]  Beatriz Otero,et al.  Compact finite difference modeling of 2-D acoustic wave propagation , 2016, J. Comput. Appl. Math..

[400]  J. Peraire,et al.  An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation , 2016 .

[401]  J. Parra,et al.  Optimal implicit 2-D finite differences to model wave propagation in poroelastic media , 2016 .

[402]  Thomas Bohlen,et al.  Three-dimensional viscoelastic time-domain finite-difference seismic modelling using the staggered Adams-Bashforth time integrator , 2016 .

[403]  Robert Rodriguez,et al.  A new mimetic scheme for the acoustic wave equation , 2016, J. Comput. Appl. Math..

[404]  Eric T. Chung,et al.  A new spectral finite volume method for elastic wave modelling on unstructured meshes , 2016 .

[405]  Axel Modave,et al.  A GPU‐accelerated nodal discontinuous Galerkin method with high‐order absorbing boundary conditions and corner/edge compatibility , 2016, 1610.05023.

[406]  Ruichao Ye,et al.  A discontinuous Galerkin method with a modified penalty flux for the propagation and scattering of acousto-elastic waves , 2015, 1511.00675.

[407]  Gary Cohen,et al.  Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations , 2016 .

[408]  Wensheng Zhang,et al.  A new high-order finite volume method for 3D elastic wave simulation on unstructured meshes , 2017, J. Comput. Phys..

[409]  Qinya Liu,et al.  Effective Media for Transversely Isotropic Models Based on Homogenization Theory: With Applications to Borehole Sonic Logs , 2017, Pure and Applied Geophysics.

[410]  L. Bonilla,et al.  Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development , 2017 .

[411]  Takashi Furumura,et al.  OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media , 2017, Earth, Planets and Space.

[412]  G. Miranda,et al.  High Order Compact Mimetic Differences and Discrete Energy Decay in 2D Wave Motions , 2017 .

[413]  A. Idesman Optimal reduction of numerical dispersion for wave propagation problems. Part 1: Application to 1-D isogeometric elements , 2017 .

[414]  S. P. Oliveira On Multiple Modes of Propagation of High-Order Finite Element Methods for the Acoustic Wave Equation , 2017 .

[415]  S. Hanasoge,et al.  Discrete wave equation upscaling , 2017 .

[416]  Heiner Igel,et al.  Computational Seismology: A Practical Introduction , 2017 .

[417]  Jeffrey Shragge,et al.  Solving the tensorial 3D acoustic wave equation: A mimetic finite-difference time-domain approach , 2017 .

[418]  S. P. Oliveira Error Analysis of Chebyshev Spectral Element Methods for the Acoustic Wave Equation in Heterogeneous Media , 2018, Journal of Theoretical and Computational Acoustics.

[419]  R. Hawkins A spectral element method for surface wave dispersion and adjoints , 2018, Geophysical Journal International.

[420]  P. Cupillard,et al.  Non-periodic homogenization of 3-D elastic media for the seismic wave equation , 2018 .

[421]  Zhixing Fu,et al.  Stormer-Numerov HDG Methods for Acoustic Waves , 2018, J. Sci. Comput..

[422]  S. P. Oliveira,et al.  Error analysis of the spectral element method with Gauss–Lobatto–Legendre points for the acoustic wave equation in heterogeneous media , 2018, Applied Numerical Mathematics.

[423]  Jean-Pierre Vilotte,et al.  A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation , 2018 .

[424]  C. Shin,et al.  Linear-slip discrete fracture network model and multiscale seismic wave simulation , 2019, Journal of Applied Geophysics.

[425]  S. Pichardo,et al.  Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations. , 2019, The Journal of the Acoustical Society of America.

[426]  J. Shragge,et al.  Performance and stability of the double absorbing boundary method for acoustic-wave propagation , 2019, GEOPHYSICS.

[427]  J. Carcione,et al.  A nodal discontinuous Galerkin finite element method for the poroelastic wave equation , 2019, Computational Geosciences.

[428]  R. Gracie,et al.  Enriched mixed finite element models for dynamic analysis of continuous and fractured porous media , 2019, Computer Methods in Applied Mechanics and Engineering.

[429]  L. Pavarino,et al.  Explicit second order isogeometric discretizations for acoustic wave problems , 2019, Computer Methods in Applied Mechanics and Engineering.

[430]  Khemraj Shukla,et al.  Modeling the wave propagation in viscoacoustic media: An efficient spectral approach in time and space domain , 2019, Comput. Geosci..

[431]  Eric T. Chung,et al.  A high-order multiscale finite-element method for time-domain elastic wave modeling in strongly heterogeneous media , 2019, Journal of Applied Geophysics.

[432]  Jacek Chodacki Simulation of ground motion in a polish coal mine using spectral-element method , 2020, Journal of Seismology.

[433]  K. Bathe,et al.  Transient wave propagation in inhomogeneous media with enriched overlapping triangular elements , 2020 .

[434]  A. Idesman,et al.  Compact high-order stencils with optimal accuracy for numerical solutions of 2-D time-independent elasticity equations , 2020 .

[435]  J. Robertsson,et al.  Optimal finite-difference operators for arbitrarily sampled data , 2020 .

[436]  J. Ou,et al.  Dispersion Analysis of Multiscale Wavelet Finite Element for 2D Elastic Wave Propagation , 2020 .

[437]  D. Saravanos,et al.  A finite wavelet domain method for wave propagation analysis in thick laminated composite and sandwich plates , 2020 .

[438]  J. Shragge,et al.  Modeling full-wavefield time-varying sea-surface effects on seismic data: A mimetic finite-difference approach , 2020 .

[439]  O. Rojas,et al.  Comparison of expansion-based explicit time-integration schemes for acoustic wave propagation , 2020 .

[440]  Qing Huo Liu,et al.  Unified Riemann solution for multi-physics coupling: Anisotropic poroelastic/elastic/fluid interfaces , 2020, J. Comput. Phys..

[441]  Optimal Third-Order Symplectic Integration Modeling of Seismic Acoustic Wave Propagation , 2020 .

[442]  M. S. Mohamed,et al.  Explicit time integration with lumped mass matrix for enriched finite elements solution of time domain wave problems , 2020 .