Possibilistic logic

Possibilistic logic is a logic of uncertainty tailored for reasoning under incomplete evidence and partially inconsistent knowledge. At the syntactic level it handles formulas of propositional or first-order logic to which are attached numbers between 0 and 1, or more generally elements in a totally ordered set. These weights are lower bounds on so-called degrees of necessity or degrees of possibility of the corresponding formulas. The degree of necessity (or certainty) of a formula expresses to what extent the available evidence entails the truth of this formula. The degree of possibility expresses to what extent the truth of the formula is not incompatible with the available evidence.

[1]  Dov M. Gabbay,et al.  Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems , 1989, Logics and Models of Concurrent Systems.

[2]  A. Rauzy,et al.  Evaluation sémantique: une propriété de coupure pour rendre efficace la procédure de Davis et Putnam , 1988 .

[3]  J. Goguen L-fuzzy sets , 1967 .

[4]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[5]  David Makinson,et al.  General Theory of Cumulative Inference , 1988, NMR.

[6]  R. Yager An introduction to applications of possibility theory (+ commentaries by L.A. Zadeh, W. Bandler, T. Saaty, A. Kandel, D. Dubois & H. Prade, R.M. Tong and M. Kochen) , 1982 .

[7]  L. R. Harris Hypothetical reasoning , 1989 .

[8]  Didier Dubois,et al.  Dealing with Multi-Source Information in Possibilistic Logic , 1992, ECAI.

[9]  D Dubois,et al.  Belief structures, possibility theory and decomposable confidence measures on finite sets , 1986 .

[10]  Philippe Lamarre,et al.  A Promenade from Monotonicity to Non-Monotonicity Following a Theorem Prover , 1992, KR.

[11]  Peter Gärdenfors,et al.  Belief Revision and Nonmonotonic Logic: Two Sides of the Same Coin? (Abstract) , 1990, JELIA.

[12]  F. J. Pelletier,et al.  Some notes concerning fuzzy logics , 1977 .

[13]  Daniel Kahneman,et al.  Probabilistic reasoning , 1993 .

[14]  Y. Shoham Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence , 1987 .

[15]  Richard Bellman,et al.  Local and fuzzy logics , 1996 .

[16]  Richard C. T. Lee Fuzzy Logic and the Resolution Principle , 1971, JACM.

[17]  S. Weber ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥ , 1984 .

[18]  Prakash P. Shenoy,et al.  An Axiomatic Framework for Bayesian and Belief-function Propagation , 2013, UAI 1988.

[19]  István P. Orci Programming in possibilistic logic , 1989 .

[20]  Léa Sombé,et al.  Reasoning under incomplete information in artificial intelligence: A comparison of formalisms using a single example , 1990, Int. J. Intell. Syst..

[21]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[22]  Craig Boutilier,et al.  Modal Logics for Qualitative Possibility and Beliefs , 1992, UAI.

[23]  L. Zadeh,et al.  An Introduction to Fuzzy Logic Applications in Intelligent Systems , 1992 .

[24]  Susan Haack,et al.  Do we need “fuzzy logic”? , 1979 .

[25]  D. Dubois,et al.  Fuzzy sets, probability and measurement , 1989 .

[26]  Didier Dubois,et al.  Fuzzy rules in knowledge-based systems , 1992 .

[27]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[28]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[29]  Jérôme Lang Logique possibiliste : aspects formels, deduction automatique, et applications , 1991 .

[30]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[31]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[32]  菅野 道夫,et al.  Industrial applications of fuzzy control , 1985 .

[33]  Didier Dubois,et al.  HYPOTHETICAL REASONING IN POSSIBILISTIC LOGIC: BASIC NOTIONS, APPLICATIONS AND IMPLEMENTATION ISSUES , 1994 .

[34]  Claudette Cayrol,et al.  Management of Preferences in Assumption-Based Reasoning , 1992, IPMU.

[35]  Didier Dubois,et al.  Theorem Proving Under Uncertainty - A Possibility Theory-based Approach , 1987, IJCAI.

[36]  Didier Dubois,et al.  Modelling uncertainty and inductive inference: A survey of recent non-additive probability systems , 1988 .

[37]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[38]  Christine Froidevaux,et al.  Graded Default Theories for Uncertainty , 1990, ECAI.

[39]  M. H. van Emden,et al.  Quantitative Deduction and its Fixpoint Theory , 1986, J. Log. Program..

[40]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 2: logical approaches , 1991 .

[41]  Didier Dubois,et al.  Towards Possibilistic Logic Programming , 1991, ICLP.

[42]  L. Zadeh Calculus of fuzzy restrictions , 1996 .

[43]  Vilém Novák On the syntactico-semantical completeness of first-order fuzzy logic. I. Syntax and semantics , 1990, Kybernetika.

[44]  Matthew L. Ginsberg,et al.  Multi-Valued Logics , 1986, AAAI.

[45]  Didier Dubois,et al.  Conditional Objects and Non-Monontonic Reasoning , 1991, KR.

[46]  B. Sauphanor The logical foundations of statistical inference , 1974 .

[47]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[48]  Didier Dubois,et al.  A class of fuzzy measures based on triangular norms , 1982 .

[49]  Didier Dubois,et al.  Timed possibilistic logic , 1991, Fundam. Informaticae.

[50]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[51]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[52]  Didier Dubois,et al.  In Search of a Modal System for Possibility Theory , 1988, ECAI.

[53]  H. Jeffreys Logical Foundations of Probability , 1952, Nature.

[54]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[55]  Luis Fariñas del Cerro,et al.  A Modal Analysis of Possibility Theory , 1991, ECSQARU.

[56]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[57]  Liya Ding,et al.  Fundamentals of Fuzzy Prolog , 1989, Int. J. Approx. Reason..

[58]  Robert Stalnaker A Theory of Conditionals , 2019, Knowledge and Conditionals.

[59]  Didier Dubois,et al.  Resolution principles in possibilistic logic , 1990, Int. J. Approx. Reason..

[60]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[61]  Didier Dubois,et al.  Handling uncertain knowledge in an ATMS using possibilistic logic , 1991 .

[62]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[63]  D. Dubois,et al.  Belief Revision: Belief change and possibility theory , 1992 .

[64]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[65]  Luis Fariñas del Cerro,et al.  DAL - A Logic for Data Analysis , 1985, Theor. Comput. Sci..

[66]  LangJérôme,et al.  Fuzzy sets in approximate reasoning, part 2 , 1991 .

[67]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[68]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[69]  Didier Dubois,et al.  A Logic of Graded Possibility and Certainty Coping with Partial Inconsistency , 1994, UAI.

[70]  M. Cayrol,et al.  ARC : un ATMS basé sur la résolution CAT-correcte , 1989 .

[71]  Fahiem Bacchus,et al.  Representing and reasoning with probabilistic knowledge - a logical approach to probabilities , 1991 .

[72]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[73]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[74]  Jérôme Lang,et al.  Possibilistic logic as a logical framework for min-max discrete optimisation problems and prioritized constraints , 1991, FAIR.

[75]  R R Yager,et al.  Using Approximate Reasoning to Represent Default Knowledge , 1987, Artif. Intell..

[76]  David Lewis Counterfactuals and Comparative Possibility , 1973 .

[77]  E. Hisdal Conditional possibilities independence and noninteraction , 1978 .

[78]  Didier Dubois,et al.  Necessity Measures and the Resolution Principle , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[79]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[80]  C. Cayrol Un modèle logique général pour le raisonnement révisable , 1992 .

[81]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[82]  Didier Dubois,et al.  Automated Reasoning Using Possibilistic Logic: Semantics, Belief Revision, and Variable Certainty Weights , 1994, IEEE Trans. Knowl. Data Eng..

[83]  E. H. Mamdani,et al.  Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis , 1976, IEEE Transactions on Computers.

[84]  Nicholas Rescher Plausible reasoning : an introduction to the theory and practice of plausibilistic inference , 1976 .

[85]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[86]  Johan de Kleer,et al.  Extending the ATMS , 1986, Artif. Intell..

[87]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[88]  Didier Dubois,et al.  A Possibilistic Assumption-Based Truth Maintenance System with Uncertain Justifications, and its Application to Belief Revision , 1990, Truth Maintenance Systems.

[89]  Peter Gärdenfors,et al.  Relations between the logic of theory change and nonmonotonic logic , 1989, The Logic of Theory Change.

[90]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[91]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[92]  Didier Dubois,et al.  Inconsistency in possibilistic knowledge bases: to live with it or not live with it , 1992 .

[93]  Luis Fariñas del Cerro,et al.  From Ordering-Based Nonmonotonic Reasoning to Conditional Logics , 1992, Artif. Intell..

[94]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .