2-Norm Error Bounds and Estimates for Lanczos Approximations to Linear Systems and Rational Matrix Functions
暂无分享,去创建一个
Thomas Lippert | Andreas Frommer | Karsten Kahl | Hannah Rittich | A. Frommer | T. Lippert | K. Kahl | H. Rittich
[1] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[2] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[3] Andreas Frommer,et al. BiCGStab(ℓ) for Families of Shifted Linear Systems , 2003, Computing.
[4] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[5] VALERIA SIMONCINI,et al. MATRIX FUNCTIONS , 2006 .
[6] Gérard Meurant,et al. On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.
[7] Gérard Meurant. Estimates of the l2 norm of the error in the conjugate gradient algorithm , 2005, Numerical Algorithms.
[8] G. Golub,et al. Bounds for the error of linear systems of equations using the theory of moments , 1972 .
[9] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[10] Andreas Frommer,et al. Fast CG-Based Methods for Tikhonov-Phillips Regularization , 1999, SIAM J. Sci. Comput..
[11] Andreas Frommer,et al. MONOTONE CONVERGENCE OF THE LANCZOS APPROXIMATIONS TO MATRIX FUNCTIONS OF HERMITIAN MATRICES , 2009 .
[12] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[13] Error Estimates in Linear Systems , 1999 .
[14] Ernesto Estrada,et al. Communicability in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[16] P. Petrushev,et al. Rational Approximation of Real Functions , 1988 .
[17] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[18] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[19] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[20] Valeria Simoncini,et al. Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..
[21] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[22] Andreas Frommer,et al. QCD and numerical analysis III : proceedings of the Third International Workshop on Numerical Analysis and Lattice QCD, Edinburgh, June-July 2003 , 2005 .
[23] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[24] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[25] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[26] Gérard Meurant,et al. Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.
[27] G. Golub,et al. Bounds for the error in linear systems , 1979 .
[28] Gerard L. G. Sleijpen,et al. Accurate conjugate gradient methods for families of shifted systems , 2004 .
[29] G. A. Baker,et al. Padé Approximants Second Edition: Extensions of Padé approximants , 1996 .
[30] B. Parlett. A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .
[31] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[32] R. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .
[33] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[34] Valeria Simoncini,et al. Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..
[35] ANDREAS FROMMER,et al. Stopping Criteria for Rational Matrix Functions of Hermitian and Symmetric Matrices , 2008, SIAM J. Sci. Comput..
[36] Valeria Simoncini,et al. Error Bounds for Lanczos Approximations of Rational Functions of Matrices , 2009, Numerical Validation in Current Hardware Architectures.
[37] Vladimir Druskin,et al. On monotonicity of the Lanczos approximation to the matrix exponential , 2008 .
[38] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[39] Gérard Meurant. The computation of bounds for the norm of the error in the conjugate gradient algorithm , 2004, Numerical Algorithms.