Order-Based Dependent Dirichlet Processes

In this article we propose a new framework for Bayesian nonparametric modeling with continuous covariates. In particular, we allow the nonparametric distribution to depend on covariates through ordering the random variables building the weights in the stick-breaking representation. We focus mostly on the class of random distributions that induces a Dirichlet process at each covariate value. We derive the correlation between distributions at different covariate values and use a point process to implement a practically useful type of ordering. Two main constructions with analytically known correlation structures are proposed. Practical and efficient computational methods are introduced. We apply our framework, through mixtures of these processes, to regression modeling, the modeling of stochastic volatility in time series data, and spatial geostatistical modeling.

[1]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[2]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[3]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[4]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[5]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[6]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[7]  J. Pitman Some developments of the Blackwell-MacQueen urn scheme , 1996 .

[8]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[9]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[10]  B. Mallick,et al.  Combining information from several experiments with nonparametric priors , 1997 .

[11]  Steven N. MacEachern,et al.  Computational Methods for Mixture of Dirichlet Process Models , 1998 .

[12]  L. Tardella,et al.  Approximating distributions of random functionals of Ferguson‐Dirichlet priors , 1998 .

[13]  P. Müller,et al.  Semiparametric PK/PD Models , 1998 .

[14]  L Knorr-Held,et al.  Bayesian Detection of Clusters and Discontinuities in Disease Maps , 2000, Biometrics.

[15]  H. Ishwaran,et al.  Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .

[16]  Alan E. Gelfand,et al.  SPATIAL NONPARAMETRIC BAYESIAN MODELS , 2001 .

[17]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[18]  Steffen L. Lauritzen,et al.  Nonparametric Bayes inference for concave distribution functions , 2002 .

[19]  Alan E. Gelfand,et al.  A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models , 2002 .

[20]  Keisuke Hirano,et al.  Semiparametric Bayesian Inference in Autoregressive Panel Data Models , 2002 .

[21]  Mario Medvedovic,et al.  Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..

[22]  Semiparametric hierarchical selection models for bayesian meta analysis , 2002 .

[23]  Siddhartha Chib,et al.  Semiparametric Bayes analysis of longitudinal data treatment models , 2002 .

[24]  D. D. Castro,et al.  Semiparametric regression for count data , 2002 .

[25]  Anthony O'Hagan,et al.  A hierarchical Bayes model for multilocation auditing , 2002 .

[26]  M. Steel,et al.  Semiparametric Bayesian Inference for Stochastic Frontier Models , 2004 .

[27]  Alan E Gelfand,et al.  A Nonparametric Bayesian Modeling Approach for Cytogenetic Dosimetry , 2002, Biometrics.

[28]  J. Møller,et al.  Shot noise Cox processes , 2003, Advances in Applied Probability.

[29]  Anthony O'Hagan,et al.  Assessing and comparing costs: how robust are the bootstrap and methods based on asymptotic normality? , 2003, Health economics.

[30]  Stephen G. Walker,et al.  A New Class of Bayesian Semiparametric Models with Applications to Option Pricing , 2011 .

[31]  Hani Doss,et al.  Monte Carlo Methods for Bayesian Analysis of Survival Data Using Mixtures of Dirichlet Process Priors , 2003 .

[32]  Kaushik Ghosh,et al.  Semiparametric Bayesian Techniques for Problems in Circular Data , 2003 .

[33]  M. J. Bayarri,et al.  Non-Centered Parameterisations for Hierarchical Models and Data Augmentation , 2003 .

[34]  Gareth O. Roberts,et al.  Non-centred parameterisations for hierarchical models and data augmentation. , 2003 .

[35]  Paolo Giudici,et al.  Mixtures of products of Dirichlet processes for variable selection in survival analysis , 2003 .

[36]  D. B. Dahl An improved merge-split sampler for conjugate dirichlet process mixture models , 2003 .

[37]  A. L. Pretorius,et al.  Bayesian estimation in animal breeding using the Dirichlet process prior for correlated random effects , 2003, Genetics Selection Evolution.

[38]  S. MacEachern,et al.  An ANOVA Model for Dependent Random Measures , 2004 .

[39]  Refik Soyer,et al.  Bayesian Methods for Nonlinear Classification and Regression , 2004, Technometrics.

[40]  P. Müller,et al.  A method for combining inference across related nonparametric Bayesian models , 2004 .

[41]  Mark J. Jensen,et al.  Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models , 2004 .

[42]  W. Gilks Markov Chain Monte Carlo , 2005 .

[43]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[44]  Donato Michele Cifarelli,et al.  Nonparametric statistical problems under partial exchangeability . The role of associative means . Translated from Problemi statistici non parametrici in condizioni di scambiabilità parziale : impiego di medie associative , 2008 .

[45]  T. Holmes Partition Modelling , .