Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction

[1]  M. Daly,et al.  Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan , 2019, bioRxiv.

[2]  Alex Diaz-Papkovich,et al.  UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts , 2019, PLoS genetics.

[3]  A. Philippakis,et al.  The "All of Us" Research Program. , 2019, The New England journal of medicine.

[4]  Alicia R. Martin,et al.  Geographic Variation and Bias in the Polygenic Scores of Complex Diseases and Traits in Finland. , 2019, American journal of human genetics.

[5]  Alicia R. Martin,et al.  Clinical use of current polygenic risk scores may exacerbate health disparities , 2019, Nature Genetics.

[6]  Robert M. Maier,et al.  Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies , 2019, eLife.

[7]  M. Kanai,et al.  Genetic and phenotypic landscape of the major histocompatibilty complex region in the Japanese population , 2019, Nature Genetics.

[8]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[9]  N. Patterson,et al.  Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. , 2019, American journal of human genetics.

[10]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[11]  G. Coop,et al.  Reduced signal for polygenic adaptation of height in UK Biobank , 2018, bioRxiv.

[12]  Yukinori Okada,et al.  Grimon: graphical interface to visualize multi-omics networks , 2018, Bioinform..

[13]  Kazuhiko Yamamoto,et al.  Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese , 2018, Nature Communications.

[14]  S. Rasmussen,et al.  Physiological and Genetic Adaptations to Diving in Sea Nomads , 2018, Cell.

[15]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[16]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[17]  Shuhua Xu,et al.  The fine-scale genetic structure and evolution of the Japanese population , 2017, PloS one.

[18]  M. Benedetti,et al.  Psychometric validation of the Italian Rehabilitation Complexity Scale-Extended version 13 , 2017, PloS one.

[19]  M. Kanai,et al.  Genome-wide association study identifies 112 new loci for body mass index in the Japanese population , 2017, Nature Genetics.

[20]  Matti Pirinen,et al.  Fine-Scale Genetic Structure in Finland , 2017, G3: Genes, Genomes, Genetics.

[21]  Y. Okada,et al.  A Multinational Arab Genome‐Wide Association Study Identifies New Genetic Associations for Rheumatoid Arthritis , 2017, Arthritis & rheumatology.

[22]  P. Visscher,et al.  Genetic signatures of high-altitude adaptation in Tibetans , 2017, Proceedings of the National Academy of Sciences.

[23]  Weidong Xiao,et al.  A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features , 2017, J. Bioinform. Comput. Biol..

[24]  Y. Kamatani,et al.  Cross-sectional analysis of BioBank Japan clinical data: A large cohort of 200,000 patients with 47 common diseases , 2017, Journal of epidemiology.

[25]  Y. Kamatani,et al.  Overview of the BioBank Japan Project: Study design and profile , 2017, Journal of epidemiology.

[26]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[27]  Sayan Mukherjee,et al.  Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. , 2016, American journal of human genetics.

[28]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[29]  Anders Albrechtsen,et al.  Greenlandic Inuit show genetic signatures of diet and climate adaptation , 2015, Science.

[30]  Laura H. Lewis,et al.  Rethinking the dispersal of Homo sapiens out of Africa , 2015, Evolutionary anthropology.

[31]  M. Pirinen,et al.  The fine-scale genetic structure of the British population , 2015, Nature.

[32]  Asan,et al.  Altitude adaptation in Tibet caused by introgression of Denisovan-like DNA , 2014, Nature.

[33]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[34]  G. Coop,et al.  A Population Genetic Signal of Polygenic Adaptation , 2013, PLoS genetics.

[35]  A. Platzer Visualization of SNPs with t-SNE , 2013, PloS one.

[36]  L. Alfredsson,et al.  Polymorphisms in peptidylarginine deiminase associate with rheumatoid arthritis in diverse Asian populations: evidence from MyEIRA study and meta-analysis , 2012, Arthritis Research & Therapy.

[37]  N. Saitou,et al.  The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations , 2012, Journal of Human Genetics.

[38]  Cameron D. Palmer,et al.  Evidence of widespread selection on standing variation in Europe at height-associated SNPs , 2012, Nature Genetics.

[39]  L. Alfredsson,et al.  Smoking interacts with HLA-DRB1 shared epitope in the development of anti-citrullinated protein antibody-positive rheumatoid arthritis: results from the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA) , 2012, Arthritis Research & Therapy.

[40]  Joseph K. Pickrell,et al.  Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data , 2012, PLoS genetics.

[41]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[42]  David H. Alexander,et al.  Fast model-based estimation of ancestry in unrelated individuals. , 2009, Genome research.

[43]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[44]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[45]  N. Saitou,et al.  Genetic origins of the Japanese: a partial support for the dual structure hypothesis. , 1997, American journal of physical anthropology.

[46]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[47]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[48]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[49]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .