2-Factors of Bipartite Graphs with Asymmetric Minimum Degrees
暂无分享,去创建一个
Andrzej Czygrinow | Hal A. Kierstead | Louis DeBiasio | H. Kierstead | A. Czygrinow | Louis DeBiasio
[1] Phong Châu. Hamiltonian square cycles in ore -type graphs , 2009 .
[2] Hal A. Kierstead,et al. The Square of Paths and Cycles , 1995, J. Comb. Theory, Ser. B.
[3] János Komlós,et al. On the square of a Hamiltonian cycle in dense graphs , 1996, Random Struct. Algorithms.
[4] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[5] Endre Szemerédi,et al. Proof of a Conjecture of Bollobás and Eldridge for Graphs of Maximum Degree Three* , 2003, Comb..
[6] Hong Wang. On 2-factors of a bipartite graph , 1999, J. Graph Theory.
[7] J. Moon,et al. On Hamiltonian bipartite graphs , 1963 .
[8] Paul A. Catlin,et al. Embedding subgraphs and coloring graphs under extremal degree conditions , 1976 .
[9] Alexandr V. Kostochka,et al. Graphs Containing Every 2-Factor , 2012, Graphs Comb..
[10] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[11] Andrzej Czygrinow,et al. 2-factors in Dense Bipartite Graphs , 2002, Discret. Math..
[12] B. Bollobás,et al. Maximal matchings in graphs with given minimal and maximal degrees , 1976 .
[13] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[14] Mohamed H. El-Zahar,et al. On circuits in graphs , 1984, Discret. Math..
[15] Hal A. Kierstead,et al. Hamiltonian Square-Paths , 1996, J. Comb. Theory, Ser. B.
[16] Victor Alexandrov,et al. Problem section , 2007 .
[17] Hong Wang. Bipartite graphs containing every possible pair of cycles , 1999, Discret. Math..
[18] M. Aigner,et al. Embedding Arbitrary Graphs of Maximum Degree Two , 1993 .
[19] Alexandr V. Kostochka,et al. Ore-type graph packing problems , 2006, Combinatorics, Probability and Computing.
[20] Endre Szemerédi,et al. Proof of the Seymour conjecture for large graphs , 1998 .