Applications of machine learning for simulations of red blood cells in microfluidic devices

[1]  Subra Suresh,et al.  Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. , 2018, Small.

[2]  Rozli Zulkifli,et al.  Impact of the TiO2 Nanosolution Concentration on Heat Transfer Enhancement of the Twin Impingement Jet of a Heated Aluminum Plate , 2019, Micromachines.

[3]  D. Fedosov,et al.  Effect of spectrin network elasticity on the shapes of erythrocyte doublets. , 2018, Soft matter.

[4]  Subra Suresh,et al.  Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. , 2018, Small.

[5]  Alexander Kihm,et al.  Classification of red blood cell shapes in flow using outlier tolerant machine learning , 2018, PLoS Comput. Biol..

[6]  Martin Slavík,et al.  Simulation of Blood Flow in Microfluidic Devices for Analysing of Video from Real Experiments , 2018, IWBBIO.

[7]  M. Brandl,et al.  Cell Damage Index as Computational Indicator for Blood Cell Activation and Damage , 2018, Artificial organs.

[8]  Alessandra Carbone,et al.  Meet-U: Educating through research immersion , 2018, PLoS Comput. Biol..

[9]  M A Muchtar,et al.  The morphological classification of normal and abnormal red blood cell using Self Organizing Map , 2018 .

[10]  Alexander Kihm,et al.  Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel. , 2017, Soft matter.

[11]  Gerhard Gompper,et al.  Margination and stretching of von Willebrand factor in the blood stream enable adhesion , 2017, Scientific Reports.

[12]  M. Faivre,et al.  Impact of Channel Geometry on the Discrimination of Mechanically Impaired Red Blood Cells in Passive Microfluidics , 2017 .

[13]  M. Slavík,et al.  Methods of exploring the red blood cells rotation during the simulations in devices with periodic topology , 2017, 2017 International Conference on Information and Digital Technologies (IDT).

[14]  Hynek Bachratý,et al.  The sensitivity of the statistical characteristics to the selected parameters of the simulation model in the red blood cell flow simulations , 2017, 2017 International Conference on Information and Digital Technologies (IDT).

[15]  Franck Nicoud,et al.  How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics? , 2017, Biomechanics and Modeling in Mechanobiology.

[16]  Dino Di Carlo,et al.  Biophysical isolation and identification of circulating tumor cells. , 2017, Lab on a chip.

[17]  Martin Slavík,et al.  Statistics for comparison of simulations and experiments of flow of blood cells , 2017 .

[18]  Ivan Cimrák,et al.  Simulation study of rare cell trajectories and capture rate in periodic obstacle arrays , 2016, J. Comput. Sci..

[19]  Makoto Kaneko,et al.  An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation , 2016, Micromachines.

[20]  H. Elsalamony,et al.  Healthy and unhealthy red blood cell detection in human blood smears using neural networks. , 2016, Micron.

[21]  S. Wada,et al.  Analysis of Red Blood Cell Deformation under Fast Shear Flow for Better Estimation of Hemolysis , 2014, International journal for numerical methods in biomedical engineering.

[22]  Markus Gusenbauer,et al.  An ESPResSo implementation of elastic objects immersed in a fluid , 2013, Comput. Phys. Commun..

[23]  Axel Arnold,et al.  ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models , 2013 .

[24]  James J. Feng,et al.  How malaria parasites reduce the deformability of infected red blood cells. , 2012, Biophysical journal.

[25]  Junfei Qiao,et al.  Adaptive Computation Algorithm for RBF Neural Network , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[26]  Dierk Raabe,et al.  Author's Personal Copy Computers and Mathematics with Applications , 2022 .

[27]  Dmitry A. Fedosov,et al.  Multiscale Modeling of Blood Flow and Soft Matter , 2010 .

[28]  George Em Karniadakis,et al.  Multiscale modeling of blood flow in cerebral malaria , 2009 .

[29]  V. Martinelli,et al.  Red blood cell deformation in microconfined flow , 2009 .

[30]  C. Lim,et al.  Deformability study of breast cancer cells using microfluidics , 2009, Biomedical microdevices.

[31]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[32]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[33]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[34]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[35]  Burkhard Dünweg,et al.  Lattice Boltzmann Simulation of Polymer-Solvent Systems , 1998 .

[36]  Dimitry Gorinevsky,et al.  Radial basis function network approximation and learning in task-dependent feedforward control of nonlinear dynamical systems , 1998 .

[37]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[38]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[39]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .