All-sky search for long-duration gravitational wave transients with initial LIGO

We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 seconds in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also report upper limits on the source rate density per year per Mpc^3 for specific signal models. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.

[1]  G. González The LIGO Scientific Collaboration , 2016 .

[2]  Michael Coughlin,et al.  Detecting Gravitational-Wave Transients at 5σ: A Hierarchical Approach. , 2015, Physical review letters.

[3]  O. E. Bronson Messer,et al.  Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars , 2015, 1505.05824.

[4]  P. Meyers,et al.  Prospects for searches for long-duration gravitational-waves without time slides , 2015, 1505.00205.

[5]  V. Mandic,et al.  Detecting very long-lived gravitational-wave transients lasting hours to weeks , 2015, 1501.06648.

[6]  S. Bernuzzi,et al.  Simulations of rotating neutron star collapse with the puncture gauge: End state and gravitational waveforms , 2014, 1412.5499.

[7]  P. Meyers,et al.  Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors , 2014, 1412.4665.

[8]  O. Miyakawa,et al.  Excavation of an underground site for a km-scale laser interferometric gravitational-wave detector , 2014 .

[9]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[10]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[11]  E. Thrane,et al.  Detecting compact binary coalescences with seedless clustering , 2014, 1408.0840.

[12]  S. Klimenko,et al.  Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. , 2014, Physical review letters.

[13]  Chris L. Fryer,et al.  THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES , 2014, 1403.0677.

[14]  M. S. Shahriar,et al.  Implementation of an F ?> -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data , 2014, 1402.4974.

[15]  E. Thrane,et al.  Seedless clustering in all-sky searches for gravitational-wave transients , 2014, 1401.8060.

[16]  J. K. Blackburn,et al.  Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run , 2013, 1311.2409.

[17]  J. K. Blackburn,et al.  Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts , 2013, 1309.6160.

[18]  J. K. Blackburn,et al.  Directed search for continuous gravitational waves from the Galactic center , 2013, 1309.6221.

[19]  J. K. Blackburn,et al.  Gravitational waves from known pulsars: Results from the initial detector era , 2013, 1309.4027.

[20]  Eric Thrane,et al.  Searching for gravitational-wave transients with a qualitative signal model: Seedless clustering strategies , 2013, 1308.5292.

[21]  M. Papa,et al.  Searching for gravitational waves with the LIGO and Virgo interferometers , 2013, 1304.4984.

[22]  K. Kotake,et al.  Gravitational Wave Signatures from Low-mode Spiral Instabilities in Rapidly Rotating Supernova Cores , 2013, 1304.4372.

[23]  A. Levan,et al.  Signatures of magnetar central engines in short GRB light curves , 2013, 1301.0629.

[24]  H. Janka,et al.  A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS , 2012, 1210.6984.

[25]  K. S. Thorne,et al.  Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data , 2012, Physical Review D.

[26]  E. Thrane,et al.  GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS , 2012, 1207.3805.

[27]  J. K. Blackburn,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012 .

[28]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[29]  J. K. Blackburn,et al.  Search for gravitational waves from intermediate mass binary black holes , 2012, 1201.5999.

[30]  Benedict A. Hubbert,et al.  Identification of noise artifacts in searches for long-duration gravitational-wave transients , 2011, 1111.1631.

[31]  Kei Kotake,et al.  Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae , 2011, 1110.5107.

[32]  Masaru Shibata,et al.  Coalescence of Black Hole-Neutron Star Binaries , 2011, Living reviews in relativity.

[33]  J. Font,et al.  Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems. , 2011, Physical review letters.

[34]  C. Ott,et al.  SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE , 2011, 1104.0252.

[35]  T. Hayler,et al.  Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.

[36]  Antonis Mytidis,et al.  Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers , 2010, 1012.2150.

[37]  Princeton,et al.  Dynamics and gravitational wave signature of collapsar formation. , 2010, Physical Review Letters.

[38]  R. Ciolfi,et al.  Structure, deformations and gravitational wave emission of magnetars , 2010, 1011.2778.

[39]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[40]  Joshua R. Smith,et al.  Methods for reducing false alarms in searches for compact binary coalescences in LIGO data , 2010, 1004.0998.

[41]  T. Fischer,et al.  The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse , 2010, 1001.1570.

[42]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[43]  K. Kotake,et al.  STOCHASTIC NATURE OF GRAVITATIONAL WAVES FROM SUPERNOVA EXPLOSIONS WITH STANDING ACCRETION SHOCK INSTABILITY , 2009, 0904.4300.

[44]  Christian D. Ott,et al.  The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.

[45]  Robert M. Cutler,et al.  Beating the spin-down limit on gravitational wave emission from the Crab pulsar , 2008 .

[46]  S. Mereghetti The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars , 2008, 0804.0250.

[47]  Z. Etienne,et al.  Fully General Relativistic Simulations of Black Hole-Neutron Star Mergers , 2007, 0712.2460.

[48]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[49]  L. Baiotti,et al.  On the gravitational radiation from the collapse of neutron stars to rotating black holes , 2007, gr-qc/0701043.

[50]  A. Piro,et al.  Fragmentation of Collapsar Disks and the Production of Gravitational Waves , 2006, astro-ph/0610696.

[51]  Potsdam,et al.  3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state. , 2006, Physical review letters.

[52]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[53]  C. Ott,et al.  One-armed Spiral Instability in a Low-T/|W| Postbounce Supernova Core , 2005, astro-ph/0503187.

[54]  D. Shoemaker,et al.  Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models , 2003, astro-ph/0309833.

[55]  M. Punturo,et al.  Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO , 2003, gr-qc/0308016.

[56]  A. Mezzacappa,et al.  Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.

[57]  N. Andersson,et al.  Probing neutron-star superfluidity with gravitational-wave data. , 2001, Physical review letters.

[58]  M. Putten Proposed source of gravitational radiation from a torus around a black hole. , 2001, astro-ph/0107007.

[59]  T. Damour,et al.  Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.

[60]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[61]  S. Babak,et al.  All-sky search for gravitational-wave bursts in the first joint LIGO- All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run GEO-Virgo run , 2021 .

[62]  J. K. Blackburn,et al.  Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors , 2020 .

[63]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[64]  M. Peter GRB AFTERGLOW PLATEAUS AND GRAVITATIONAL W AVES: M ULTI-M ESSENGER SIGNATURE OF A M ILLISECOND M AGNETAR? , 2013 .

[65]  M. A. Arain,et al.  Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3 , 2012, 1205.2216.

[66]  K. S. Thorne,et al.  The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.

[67]  W. Kells,et al.  Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010 .

[68]  C. Broeck,et al.  All-sky search for periodic gravitational waves in the full S5 LIGO data , 2022 .

[69]  C. Broeck,et al.  Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3 , 2011, 1111.7314.

[70]  P. Graff,et al.  Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. , 2022 .

[71]  J. K. Blackburn,et al.  First All-sky Search for Continuous Gravitational Waves from Unknown Sources in Binary Systems , 2022 .

[72]  J. K. Blackburn,et al.  Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in Ligo-virgo Data from 2005–2010 , 2022 .