All-sky search for long-duration gravitational wave transients with initial LIGO
暂无分享,去创建一个
S. Babak | R. Abbott | T. Abbott | F. Acernese | K. Ackley | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | A. Ain | P. Ajith | A. Allocca | W. Anderson | K. Arai | M. Araya | J. Areeda | G. Ashton | S. Aston | P. Astone | P. Aufmuth | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | J. Barayoga | S. Barclay | B. Barish | D. Barker | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bazzan | M. Bejger | G. Bergmann | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | I. Bilenko | G. Billingsley | J. Birch | R. Birney | S. Biscans | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | R. Blair | S. Bloemen | G. Bogaert | F. Bondu | R. Bonnand | R. Bork | V. Boschi | K. Arun | B. Berger | M. Bizouard | S. Bose | M. Abernathy | T. Adams | P. Addesso | B. Allen | D. Amariutei | C. Arceneaux | M. Ast | C. Aulbert | J. Batch | C. Baune | V. Bavigadda | B. Behnke | C. Belczynski | C. Bell | J. Bergman | S. Bhagwat | C. Biwer | O. Bock | T. Bodiya | C. Bogan | A. Bohé | P. Bojtos | C. Bond | S. Anderson | N. Arnaud | M. Boer | D. Blair | B. Abbott | A. Bell | C. Adams
[1] G. González. The LIGO Scientific Collaboration , 2016 .
[2] Michael Coughlin,et al. Detecting Gravitational-Wave Transients at 5σ: A Hierarchical Approach. , 2015, Physical review letters.
[3] O. E. Bronson Messer,et al. Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars , 2015, 1505.05824.
[4] P. Meyers,et al. Prospects for searches for long-duration gravitational-waves without time slides , 2015, 1505.00205.
[5] V. Mandic,et al. Detecting very long-lived gravitational-wave transients lasting hours to weeks , 2015, 1501.06648.
[6] S. Bernuzzi,et al. Simulations of rotating neutron star collapse with the puncture gauge: End state and gravitational waveforms , 2014, 1412.5499.
[7] P. Meyers,et al. Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors , 2014, 1412.4665.
[8] O. Miyakawa,et al. Excavation of an underground site for a km-scale laser interferometric gravitational-wave detector , 2014 .
[9] M. S. Shahriar,et al. Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.
[10] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[11] E. Thrane,et al. Detecting compact binary coalescences with seedless clustering , 2014, 1408.0840.
[12] S. Klimenko,et al. Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. , 2014, Physical review letters.
[13] Chris L. Fryer,et al. THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES , 2014, 1403.0677.
[14] M. S. Shahriar,et al. Implementation of an F ?> -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data , 2014, 1402.4974.
[15] E. Thrane,et al. Seedless clustering in all-sky searches for gravitational-wave transients , 2014, 1401.8060.
[16] J. K. Blackburn,et al. Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run , 2013, 1311.2409.
[17] J. K. Blackburn,et al. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts , 2013, 1309.6160.
[18] J. K. Blackburn,et al. Directed search for continuous gravitational waves from the Galactic center , 2013, 1309.6221.
[19] J. K. Blackburn,et al. Gravitational waves from known pulsars: Results from the initial detector era , 2013, 1309.4027.
[20] Eric Thrane,et al. Searching for gravitational-wave transients with a qualitative signal model: Seedless clustering strategies , 2013, 1308.5292.
[21] M. Papa,et al. Searching for gravitational waves with the LIGO and Virgo interferometers , 2013, 1304.4984.
[22] K. Kotake,et al. Gravitational Wave Signatures from Low-mode Spiral Instabilities in Rapidly Rotating Supernova Cores , 2013, 1304.4372.
[23] A. Levan,et al. Signatures of magnetar central engines in short GRB light curves , 2013, 1301.0629.
[24] H. Janka,et al. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS , 2012, 1210.6984.
[25] K. S. Thorne,et al. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data , 2012, Physical Review D.
[26] E. Thrane,et al. GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS , 2012, 1207.3805.
[27] J. K. Blackburn,et al. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012 .
[28] M. Loupias,et al. Virgo: a laser interferometer to detect gravitational waves , 2012 .
[29] J. K. Blackburn,et al. Search for gravitational waves from intermediate mass binary black holes , 2012, 1201.5999.
[30] Benedict A. Hubbert,et al. Identification of noise artifacts in searches for long-duration gravitational-wave transients , 2011, 1111.1631.
[31] Kei Kotake,et al. Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae , 2011, 1110.5107.
[32] Masaru Shibata,et al. Coalescence of Black Hole-Neutron Star Binaries , 2011, Living reviews in relativity.
[33] J. Font,et al. Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems. , 2011, Physical review letters.
[34] C. Ott,et al. SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE , 2011, 1104.0252.
[35] T. Hayler,et al. Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.
[36] Antonis Mytidis,et al. Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers , 2010, 1012.2150.
[37] Princeton,et al. Dynamics and gravitational wave signature of collapsar formation. , 2010, Physical Review Letters.
[38] R. Ciolfi,et al. Structure, deformations and gravitational wave emission of magnetars , 2010, 1011.2778.
[39] T. Hayler,et al. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .
[40] Joshua R. Smith,et al. Methods for reducing false alarms in searches for compact binary coalescences in LIGO data , 2010, 1004.0998.
[41] T. Fischer,et al. The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse , 2010, 1001.1570.
[42] B Johnson,et al. An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.
[43] K. Kotake,et al. STOCHASTIC NATURE OF GRAVITATIONAL WAVES FROM SUPERNOVA EXPLOSIONS WITH STANDING ACCRETION SHOCK INSTABILITY , 2009, 0904.4300.
[44] Christian D. Ott,et al. The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.
[45] Robert M. Cutler,et al. Beating the spin-down limit on gravitational wave emission from the Crab pulsar , 2008 .
[46] S. Mereghetti. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars , 2008, 0804.0250.
[47] Z. Etienne,et al. Fully General Relativistic Simulations of Black Hole-Neutron Star Mergers , 2007, 0712.2460.
[48] S. Fairhurst,et al. The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.
[49] L. Baiotti,et al. On the gravitational radiation from the collapse of neutron stars to rotating black holes , 2007, gr-qc/0701043.
[50] A. Piro,et al. Fragmentation of Collapsar Disks and the Production of Gravitational Waves , 2006, astro-ph/0610696.
[51] Potsdam,et al. 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state. , 2006, Physical review letters.
[52] Joshua R. Smith,et al. LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.
[53] C. Ott,et al. One-armed Spiral Instability in a Low-T/|W| Postbounce Supernova Core , 2005, astro-ph/0503187.
[54] D. Shoemaker,et al. Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models , 2003, astro-ph/0309833.
[55] M. Punturo,et al. Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO , 2003, gr-qc/0308016.
[56] A. Mezzacappa,et al. Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.
[57] N. Andersson,et al. Probing neutron-star superfluidity with gravitational-wave data. , 2001, Physical review letters.
[58] M. Putten. Proposed source of gravitational radiation from a torus around a black hole. , 2001, astro-ph/0107007.
[59] T. Damour,et al. Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.
[60] S. Woosley. Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .
[61] S. Babak,et al. All-sky search for gravitational-wave bursts in the first joint LIGO- All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run GEO-Virgo run , 2021 .
[62] J. K. Blackburn,et al. Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors , 2020 .
[63] F. Barone,et al. Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .
[64] M. Peter. GRB AFTERGLOW PLATEAUS AND GRAVITATIONAL W AVES: M ULTI-M ESSENGER SIGNATURE OF A M ILLISECOND M AGNETAR? , 2013 .
[65] M. A. Arain,et al. Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3 , 2012, 1205.2216.
[66] K. S. Thorne,et al. The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.
[67] W. Kells,et al. Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010 .
[68] C. Broeck,et al. All-sky search for periodic gravitational waves in the full S5 LIGO data , 2022 .
[69] C. Broeck,et al. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3 , 2011, 1111.7314.
[70] P. Graff,et al. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. , 2022 .
[71] J. K. Blackburn,et al. First All-sky Search for Continuous Gravitational Waves from Unknown Sources in Binary Systems , 2022 .
[72] J. K. Blackburn,et al. Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in Ligo-virgo Data from 2005–2010 , 2022 .