The multivariate Tutte polynomial (alias Potts model) for graphs and matroids

The multivariate Tutte polynomial (known to physicists as the Potts-model partition function) can be defined on an arbitrary finite graph G, or more generally on an arbitrary matroid M, and encodes much important combinatorial information about the graph (indeed, in the matroid case it encodes the full structure of the matroid). It contains as a special case the familiar two-variable Tutte polynomial -- and therefore also its one-variable specializations such as the chromatic polynomial, the flow polynomial and the reliability polynomial -- but is considerably more flexible. I begin by giving an introduction to all these problems, stressing the advantages of working with the multivariate version. I then discuss some questions concerning the complex zeros of the multivariate Tutte polynomial, along with their physical interpretations in statistical mechanics (in connection with the Yang--Lee approach to phase transitions) and electrical circuit theory. Along the way I mention numerous open problems. This survey is intended to be understandable to mathematicians with no prior knowledge of physics.

[1]  A. Scott,et al.  The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.

[2]  Tom Brylawski,et al.  A decomposition for combinatorial geometries , 1972 .

[3]  Alan D. Sokal,et al.  Spanning Forests and the q-State Potts Model in the Limit q →0 , 2005 .

[4]  Joel H. Spencer,et al.  Ramsey's Theorem - A New Lower Bound , 1975, J. Comb. Theory, Ser. A.

[5]  Jean Ruiz,et al.  Phases coexistence and surface tensions for the potts model , 1986 .

[6]  A. Nerode,et al.  An Algebraic Proof of Kirchhoff's Network Theorem , 1961 .

[7]  David Ruelle Counting Unbranched Subgraphs , 1999 .

[8]  Aldo Procacci,et al.  Polymer Gas Approach to N-Body Lattice Systems , 1999 .

[9]  Camillo Cammarota,et al.  Decay of correlations for infinite range interactions in unbounded spin systems , 1982 .

[10]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[11]  David Preiss,et al.  Cluster expansion for abstract polymer models , 1986 .

[12]  Aldo Procacci,et al.  A Remark on High Temperature Polymer Expansion for Lattice Systems with Infinite Range Pair Interactions , 1998 .

[13]  John Z. Imbrie Dimensional Reduction and Crossover to Mean-Field Behavior for Branched Polymers , 2003 .

[14]  Lorenzo Traldi,et al.  Parametrized Tutte Polynomials of Graphs and Matroids , 2006, Combinatorics, Probability and Computing.

[15]  W. T. Tutte,et al.  The Dissection of Rectangles Into Squares , 1940 .

[16]  Bill Jackson,et al.  A Zero-Free Interval for Chromatic Polynomials of Graphs , 1993, Combinatorics, Probability and Computing.

[17]  Charles J. Colbourn,et al.  The Combinatorics of Network Reliability , 1987 .

[18]  Jason I. Brown,et al.  On chromatic roots of large subdivisions of graphs , 2002, Discret. Math..

[19]  R. L. Dobrushin,et al.  Perturbation methods of the theory of Gibbsian fields , 1996 .

[20]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[21]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  John W. Moon,et al.  Some determinant expansions and the matrix-tree theorem , 1994, Discret. Math..

[23]  C. Domb,et al.  Configurational studies of the Potts models , 1974 .

[24]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[25]  Roy Dubisch,et al.  Introduction to modern algebra , 1961 .

[26]  C. Fortuin,et al.  Phase transitions in lattice systems with random local properties , 1969 .

[27]  Jean Ruiz,et al.  Theq-state Potts model in the standard Pirogov-Sinai theory: Surface tensions and Wilson loops , 1990 .

[28]  D. H. Martirosian Translation invariant Gibbs states in theq-state Potts model , 1986 .

[29]  Salvador Miracle-Sole,et al.  On the convergence of cluster expansions , 2000, 1206.4242.

[30]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[31]  William C. Brown,et al.  Matrices over commutative rings , 1993 .

[32]  F. Y. Wu Number of spanning trees on a lattice , 1977 .

[33]  Charles J. Colbourn,et al.  Roots of the Reliability Polynomial , 1992, SIAM J. Discret. Math..

[34]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[35]  Carsten Thomassen,et al.  The Zero-Free Intervals for Chromatic Polynomials of Graphs , 1997, Combinatorics, Probability and Computing.

[36]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[37]  David C. Brydges,et al.  Coulomb Systems at Low Density: A Review , 1999 .

[38]  陈崇源,et al.  使用《Basic circuit Theory》进行教学的初步体会 , 1980 .

[39]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[40]  Anton Bovier,et al.  A Simple Inductive Approach to the Problem of Convergence of Cluster Expansions of Polymer Models , 2000 .

[41]  H. Whitney A logical expansion in mathematics , 1932 .

[42]  Abdelmalek Abdesselam The Grassmann-Berezin calculus and theorems of the matrix-tree type , 2004, Adv. Appl. Math..

[43]  John Z. Imbrie,et al.  Dimensional Reduction Formulas for Branched Polymer Correlation Functions , 2002 .

[44]  Doron Zeilberger,et al.  A combinatorial approach to matrix algebra , 1985, Discret. Math..

[45]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[46]  Béla Bollobás,et al.  A Tutte Polynomial for Coloured Graphs , 1999, Combinatorics, Probability and Computing.

[47]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[48]  Olle Häggström,et al.  Random-cluster measures and uniform spanning trees , 1995 .

[49]  Russell Lyons,et al.  A bird's-eye view of uniform spanning trees and forests , 1997, Microsurveys in Discrete Probability.

[50]  Dominic Welsh,et al.  The Tutte polynomial , 1999, Random Struct. Algorithms.

[51]  Senya Shlosman,et al.  Interfaces in the Potts model II: Antonov's rule and rigidity of the order disorder interface , 1991 .

[52]  David C. Brydges,et al.  Mayer expansions and the Hamilton-Jacobi equation. II. Fermions, dimensional reduction formulas , 1988 .

[53]  Thomas Zaslavsky,et al.  Strong Tutte functions of matroids and graphs , 1992 .

[54]  James G. Oxley,et al.  Matroid theory , 1992 .

[55]  G. W. Ford,et al.  THE THEORY OF LINEAR GRAPHS WITH APPLICATIONS TO THE THEORY OF THE VIRIAL DEVELOPMENT OF THE PROPERTIES OF GASES , 1964 .

[56]  Sergio Caracciolo,et al.  Fermionic field theory for trees and forests. , 2004, Physical review letters.

[57]  H U G H E D W A R D S,et al.  The Zero-Free Intervals for Characteristic Polynomials of Matroids , 1998 .

[58]  Sergio Caracciolo,et al.  General duality for Abelian-group-valued statistical-mechanics models , 2004 .

[59]  David G. Wagner Zeros Of Reliability Polynomials And F-Vectors Of Matroids , 2000, Comb. Probab. Comput..

[60]  Shan-Ho Tsai,et al.  GROUND-STATE DEGENERACY OF POTTS ANTIFERROMAGNETS : HOMEOMORPHIC CLASSES WITH NONCOMPACT W BOUNDARIES , 1999 .

[61]  David G. Wagner,et al.  Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..

[62]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[63]  Alan D. Sokal,et al.  Chromatic Roots are Dense in the Whole Complex Plane , 2000, Combinatorics, Probability and Computing.

[64]  R. M. Damerell,et al.  Recursive families of graphs , 1972 .

[65]  Yutze Chow,et al.  ENUMERATION OF FORESTS IN A GRAPH , 2010 .

[66]  Timo Seppäläinen,et al.  Entropy for translation-invariant random-cluster measures , 1998 .

[67]  Gordon F. Royle,et al.  The Brown-Colbourn conjecture on zeros of reliability polynomials is false , 2004, J. Comb. Theory, Ser. B.

[68]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[69]  Y. K. Wang,et al.  Duality transformation in a many‐component spin model , 1976 .

[70]  S. Kobe Ernst Ising—Physicist and Teacher , 1997 .

[71]  Geoffrey Grimmett The Rank Polynomials of Large Random Lattices , 1978 .

[72]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[73]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[74]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[75]  Erhard Seiler,et al.  Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics , 1982 .

[76]  J. Moon Counting labelled trees , 1970 .

[77]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[78]  Robin Pemantle Uniform random spanning trees , 2004 .

[79]  G. Grimmett The Stochastic Random-Cluster Process and the Uniqueness of Random-Cluster Measures , 1995 .

[80]  T. Kennedy,et al.  Mayer expansions and the Hamilton-Jacobi equation , 1987 .

[81]  R. L. Dobrushin,et al.  Topics in Statistical and Theoretical Physics , 1996 .

[82]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[83]  R. Israel Convexity in the Theory of Lattice Gases , 1979 .

[84]  R. L. Dobrushin,et al.  Estimates of semiinvariants for the Ising model at low temperatures , 1996 .

[85]  Morris Newman,et al.  The Smith normal form , 1997 .

[86]  Lahoussine Laanait,et al.  Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation , 1991 .

[87]  Vincent Rivasseau,et al.  From Perturbative to Constructive Renormalization , 1991 .

[88]  Bill Jackson,et al.  Zeros of chromatic and flow polynomials of graphs , 2002, math/0205047.

[89]  W. Lenz,et al.  Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern , 1920 .

[90]  F. Y. Wu The Potts model , 1982 .

[91]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[92]  G. Royle,et al.  Location of Zeros of Chromatic and Related Polynomials of Graphs , 1994, Canadian Journal of Mathematics.

[93]  C. Borgs,et al.  Finite-size scaling for Potts models , 1991 .

[94]  Douglas R. Woodall Tutte polynomial expansions for 2-separable graphs , 2002, Discret. Math..

[95]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[96]  S. Chaiken A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .

[97]  David Ruelle Zeros of Graph-Counting Polynomials , 1999 .

[98]  Thomas Zaslavsky,et al.  Combinatorial Geometries: The Möbius Function and the Characteristic Polynomial , 1987 .

[99]  WellingtonNew ZealandE On matroids representable over GF(3) and other fields , 1997 .

[100]  G. Rota,et al.  On The Foundations of Combinatorial Theory: Combinatorial Geometries , 1970 .

[101]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[102]  F. David,et al.  Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice , 1988 .

[103]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[104]  Daniel J. Kleitman,et al.  Matrix Tree Theorems , 1978, J. Comb. Theory A.

[105]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[106]  R. Spence,et al.  Tellegen's theorem and electrical networks , 1970 .

[107]  Alan D. Sokal,et al.  Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.

[108]  M. J. Stephen Percolation problems and the Potts model , 1976 .

[109]  S. Brush History of the Lenz-Ising Model , 1967 .

[110]  John Z. Imbrie,et al.  Branched polymers and dimensional reduction , 2001 .

[111]  F. Y. Wu Potts model of magnetism (invited) , 1984 .

[112]  J. Ashkin,et al.  Two Problems in the Statistical Mechanics of Crystals. I. The Propagation of Order in Crystal Lattices. I. The Statistics of Two-Dimensional Lattices with Four Components. , 1943 .

[113]  Robert Savit,et al.  Duality in field theory and statistical systems , 1980 .

[114]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[115]  Shan-Ho Tsai,et al.  Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0 , 1997 .

[116]  William T. Tutte A Ring in Graph Theory , 1947 .

[117]  Shan-Ho Tsai,et al.  Asymptotic limits and zeros of chromatic polynomials and ground-state entropy of Potts antiferromagnets , 1997 .

[118]  H Wagner,et al.  Algebraic formulation of duality transformations for abelian lattice models , 1982 .

[119]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[120]  Elliott H. Lieb,et al.  A general Lee-Yang theorem for one-component and multicomponent ferromagnets , 1981 .

[121]  Norman Balabanian,et al.  Electrical Network Theory , 1969 .

[122]  David G. Wagner,et al.  On the Chromatic Roots of Generalized Theta Graphs , 2001, J. Comb. Theory, Ser. B.

[123]  John Z. Imbrie Dimensional reduction for directed branched polymers , 2004 .

[124]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[125]  David G. Wagner Rank-Three Matroids are Rayleigh , 2005, Electron. J. Comb..

[126]  David G. Wagner,et al.  Rayleigh Matroids , 2006, Comb. Probab. Comput..

[127]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[128]  T. B. Boffey,et al.  Applied Graph Theory , 1973 .