Resonant Optical Antennas

We have fabricated nanometer-scale gold dipole antennas designed to be resonant at optical frequencies. On resonance, strong field enhancement in the antenna feed gap leads to white-light supercontinuum generation. The antenna length at resonance is considerably shorter than one-half the wavelength of the incident light. This is in contradiction to classical antenna theory but in qualitative accordance with computer simulations that take into account the finite metallic conductivity at optical frequencies. Because optical antennas link propagating radiation and confined/enhanced optical fields, they should find applications in optical characterization, manipulation of nanostructures, and optical information processing.

[1]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[2]  L. Brus,et al.  Optical forces between metallic particles. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[4]  V. Couderc,et al.  White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. , 2004, Optics express.

[5]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[6]  W. P. Hall,et al.  A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease , 2004 .

[7]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[8]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[9]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[10]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[11]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[12]  A. Requicha,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[13]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[14]  Naomi J. Halas,et al.  Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .

[15]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[16]  J. Hvam,et al.  Waveguiding in surface plasmon polariton band gap structures. , 2001 .

[17]  M. Paulus,et al.  Light propagation and scattering in stratified media: a Green’s tensor approach , 2001 .

[18]  W. Shu-feng,et al.  Spectral and Temporal Properties of Femtosecond White-Light Continuum Generated in H2O , 2001 .

[19]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[20]  C. Fumeaux,et al.  Lithographic antennas at visible frequencies. , 1999, Optics letters.

[21]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[22]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[23]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[24]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[25]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[26]  Thomas L. Lentz,et al.  Advances in Optical and Electron Microscopy , 1970, The Yale Journal of Biology and Medicine.

[27]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .