Toward Intelligent Metasurfaces: The Progress from Globally Tunable Metasurfaces to Software‐Defined Metasurfaces with an Embedded Network of Controllers

Metasurfaces, the ultrathin, 2D version of metamaterials, have recently attracted a surge of attention for their capability to manipulate electromagnetic waves. Recent advances in reconfigurable and programmable metasurfaces have greatly extended their scope and reach into practical applications. Such functional sheet materials can have enormous impact on imaging, communication, and sensing applications, serving as artificial skins that shape electromagnetic fields. Motivated by these opportunities, this progress report provides a review of the recent advances in tunable and reconfigurable metasurfaces, highlighting the current challenges and outlining directions for future research. To better trace the historical evolution of tunable metasurfaces, a classification into globally and locally tunable metasurfaces is first provided along with the different physical addressing mechanisms utilized. Subsequently, coding metasurfaces, a particular class of locally tunable metasurfaces in which each unit cell can acquire discrete response states, is surveyed, since it is naturally suited to programmatic control. Finally, a new research direction of software‐defined metasurfaces is described, which attempts to push metasurfaces toward unprecedented levels of functionality by harnessing the opportunities offered by their software interface as well as their inter‐ and intranetwork connectivity and establish them in real‐world applications.

[1]  Dimitrios C. Zografopoulos,et al.  Tunable Beam Steering at Terahertz Frequencies Using Reconfigurable Metasurfaces Coupled With Liquid Crystals , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Andreas Pitsillides,et al.  Towards fault adaptive routing in metasurface controller networks , 2020, J. Syst. Archit..

[3]  Marco A. Antoniades,et al.  Toward the Realization of a Programmable Metasurface Absorber Enabled by Custom Integrated Circuit Technology , 2020, IEEE Access.

[4]  Albert Cabellos-Aparicio,et al.  Scalability Analysis of Programmable Metasurfaces for Beam Steering , 2020, IEEE Access.

[5]  Lian Shen,et al.  Deep-learning-enabled self-adaptive microwave cloak without human intervention , 2020 .

[6]  Tie Jun Cui,et al.  An optically driven digital metasurface for programming electromagnetic functions , 2020 .

[7]  Lei Zhou,et al.  A Tunable Metasurface with Switchable Functionalities: From Perfect Transparency to Perfect Absorption , 2020, Advanced Optical Materials.

[8]  H. Mosallaei,et al.  Multi-wavelength voltage-coded metasurface based on indium tin oxide: independently and dynamically controllable near-infrared multi-channels. , 2020, Optics express.

[9]  Albert Cabellos-Aparicio,et al.  Error Analysis of Programmable Metasurfaces for Beam Steering , 2020, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[10]  Sergei A. Tretyakov,et al.  Tutorial on Electromagnetic Nonreciprocity and its Origins , 2020, Proceedings of the IEEE.

[11]  H. Mosallaei,et al.  A Dynamically Modulated All‐Dielectric Metasurface Doublet for Directional Harmonic Generation and Manipulation in Transmission , 2019, Advanced Optical Materials.

[12]  Li Ting Wu,et al.  Millimeter‐Wave Digital Coding Metasurfaces Based on Nematic Liquid Crystals , 2019, Advanced Theory and Simulations.

[13]  Qiang Cheng,et al.  Breaking Reciprocity with Space‐Time‐Coding Digital Metasurfaces , 2019, Advanced materials.

[14]  Kasra Rouhi,et al.  Multi-bit graphene-based bias-encoded metasurfaces for real-time terahertz wavefront shaping: From controllable orbital angular momentum generation toward arbitrary beam tailoring , 2019, Carbon.

[15]  Sotiris Ioannidis,et al.  On the Network-Layer Modeling and Configuration of Programmable Wireless Environments , 2018, IEEE/ACM Transactions on Networking.

[16]  Zhen Tian,et al.  Electrically Tunable Perfect Terahertz Absorber Based on a Graphene Salisbury Screen Hybrid Metasurface , 2019, Advanced Optical Materials.

[17]  Ian F. Akyildiz,et al.  Exploration of Intercell Wireless Millimeter-Wave Communication in the Landscape of Intelligent Metasurfaces , 2019, IEEE Access.

[18]  Andrea Alù,et al.  Roadmap on metasurfaces , 2019, Journal of Optics.

[19]  Shulin Sun,et al.  Electromagnetic metasurfaces: physics and applications , 2019, Advances in Optics and Photonics.

[20]  Mohamed-Slim Alouini,et al.  Wireless Communications Through Reconfigurable Intelligent Surfaces , 2019, IEEE Access.

[21]  T. Cui,et al.  Full controls of OAM vortex beam and realization of retro and negative reflections at oblique incidence using dual-band 2-bit coding metasurface , 2019, Materials Research Express.

[22]  N. Panoiu,et al.  Large enhancement of the effective second-order nonlinearity in graphene metasurfaces , 2019, Physical Review B.

[23]  Tie Jun Cui,et al.  Hybrid Digital Coding Metasurface for Independent Control of Propagating Surface and Spatial Waves , 2019, Advanced Optical Materials.

[24]  Yijun Feng,et al.  Dual-Helicity Decoupled Coding Metasurface for Independent Spin-to-Orbital Angular Momentum Conversion , 2019, Physical Review Applied.

[25]  Mohamed-Slim Alouini,et al.  Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come , 2019, EURASIP Journal on Wireless Communications and Networking.

[26]  Shiyang Liu,et al.  Magnetically controllable nonreciprocal Goos-Hänchen shift supported by a magnetic plasmonic gradient metasurface , 2019, Physical Review A.

[27]  Andrea Alù,et al.  Machine-learning reprogrammable metasurface imager , 2019, Nature Communications.

[28]  Eduard Alarcón,et al.  Reprogrammable Graphene-based Metasurface Mirror with Adaptive Focal Point for THz Imaging , 2019, Scientific Reports.

[29]  Anastasios D. Koulouklidis,et al.  Experimental Demonstration of Ultrafast THz Modulation in a Graphene-Based Thin Film Absorber through Negative Photoinduced Conductivity , 2019, ACS photonics.

[30]  Lei Zhang,et al.  Flexible controls of broadband electromagnetic wavefronts with a mechanically programmable metamaterial , 2019, Scientific Reports.

[31]  Ali Momeni,et al.  Addition Theorem Revisiting for Phase/Amplitude-Encoded Metasurfaces: Asymmetric Spatial Power Dividers , 2019, 1901.04063.

[32]  Wideband Coding metasurfaces based on low Q resonators , 2019, Optics Communications.

[33]  Sergei A. Tretyakov,et al.  Intelligent Metasurfaces with Continuously Tunable Local Surface Impedance for Multiple Reconfigurable Functions , 2018, Physical Review Applied.

[34]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[35]  Sergei A. Tretyakov,et al.  Toward Ultimate Control of Terahertz Wave Absorption in Graphene , 2017, IEEE Transactions on Antennas and Propagation.

[36]  E. Kriezis,et al.  Degenerate four-wave mixing in nonlinear resonators comprising two-dimensional materials: A coupled-mode theory approach , 2018, Physical Review B.

[37]  Xiang Wan,et al.  Machine‐Learning Designs of Anisotropic Digital Coding Metasurfaces , 2018, Advanced Theory and Simulations.

[38]  Prasad P. Iyer,et al.  Uniform Thermo-Optic Tunability of Dielectric Metalenses , 2018, Physical Review Applied.

[39]  Maria Kafesaki,et al.  Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection , 2018, Advanced optical materials.

[40]  A. Pitilakis,et al.  Tunable Perfect Anomalous Reflection in Metasurfaces with Capacitive Lumped Elements , 2018, 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials).

[41]  Lei Zhou,et al.  High‐Efficiency Metasurfaces: Principles, Realizations, and Applications , 2018, Advanced Optical Materials.

[42]  Ping Jin,et al.  Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials , 2018, NPG Asia Materials.

[43]  X. Cao,et al.  A New Coding Metasurface for Wideband RCS Reduction , 2018, Radioengineering.

[44]  Li Zhang,et al.  Design of Phase Gradient Coding Metasurfaces for Broadband Wave Modulating , 2018, Scientific Reports.

[45]  Ian F. Akyildiz,et al.  A New Wireless Communication Paradigm through Software-Controlled Metasurfaces , 2018, IEEE Communications Magazine.

[46]  Ian F. Akyildiz,et al.  Using any surface to realize a new paradigm for wireless communications , 2018, Commun. ACM.

[47]  Bian Wu,et al.  Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface , 2018, IEEE Transactions on Microwave Theory and Techniques.

[48]  Long Tao,et al.  Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness , 2018 .

[49]  Ali Momeni,et al.  An Information Theory-Inspired Strategy for Design of Re-programmable Encrypted Graphene-based Coding Metasurfaces at Terahertz Frequencies , 2018, Scientific Reports.

[50]  Christophe Caloz,et al.  What is Nonreciprocity , 2018, 1804.00235.

[51]  T. Cui,et al.  Addition Theorem for Digital Coding Metamaterials , 2018 .

[52]  A. Lakhtakia,et al.  Characteristic Attributes of Multiple Cascaded Terahertz Metasurfaces with Magnetically Tunable Subwavelength Resonators , 2018 .

[53]  Hua Ma,et al.  Absorptive coding metasurface for further radar cross section reduction , 2018 .

[54]  J. Pendry,et al.  Broadband Tunable THz Absorption with Singular Graphene Metasurfaces. , 2018, ACS nano.

[55]  Zhiqiang Li,et al.  Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase. , 2018, Optics express.

[56]  Tie Jun Cui,et al.  Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves , 2018, Light: Science & Applications.

[57]  M. Swillam,et al.  Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides , 2018 .

[58]  Odysseas Tsilipakos,et al.  Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection , 2018, ACS photonics.

[59]  Seyoon Kim,et al.  Electronically Tunable Perfect Absorption in Graphene. , 2017, Nano letters.

[60]  Mahasweta Sarkar,et al.  Smart Connectivity for Internet of Things (IoT) Applications , 2018 .

[61]  A. Alú,et al.  Non-reciprocal photonics based on time modulation , 2017 .

[62]  Nikita A. Butakov,et al.  Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions , 2017 .

[63]  Xiangang Luo,et al.  Reconfigurable Metasurface for Multifunctional Control of Electromagnetic Waves , 2017 .

[64]  Tie Jun Cui,et al.  Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces. , 2017, ACS applied materials & interfaces.

[65]  Ortwin Hess,et al.  Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials , 2017, Science Advances.

[66]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[67]  Vincenzo Galdi,et al.  Coding Metasurfaces for Diffuse Scattering: Scaling Laws, Bounds, and Suboptimal Design , 2017 .

[68]  Tianlin Yu,et al.  Wave manipulation with magnetically tunable metasurfaces , 2017, Scientific Reports.

[69]  Yuri S. Kivshar,et al.  Reversible Thermal Tuning of All‐Dielectric Metasurfaces , 2017 .

[70]  Tomer Lewi,et al.  Ultrawide Thermo-optic Tuning of PbTe Meta-Atoms. , 2017, Nano letters.

[71]  Zhijian Chen,et al.  Bioinspired Adaptive Microplate Arrays for Magnetically Tuned Optics , 2017 .

[72]  Makoto Nakajima,et al.  Tunable reflective liquid crystal terahertz waveplates , 2017, JSAP-OSA Joint Symposia 2017 Abstracts.

[73]  Sheng Liu,et al.  Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces , 2017, Nature Communications.

[74]  Chengkuo Lee,et al.  Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial , 2017, Advanced materials.

[75]  Tianjing Guo,et al.  Enhanced third harmonic generation with graphene metasurfaces , 2017, 1704.04506.

[76]  Xiang Wan,et al.  Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface , 2017 .

[77]  Romeo Beccherelli,et al.  Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals , 2017, Nanotechnology.

[78]  Xiangang Luo,et al.  Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface , 2017, Scientific Reports.

[79]  Bo O. Zhu,et al.  A Reconfigurable Active Huygens' Metalens , 2017, Advanced materials.

[80]  Eric Palevsky,et al.  Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae) , 2017, Scientific Reports.

[81]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[82]  Wei Wu,et al.  Reconfigurable metasurfaces that enable light polarization control by light , 2016, Light: Science & Applications.

[83]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[84]  E. Kriezis,et al.  Coupled-mode-theory framework for nonlinear resonators comprising graphene. , 2016, Physical review. E.

[85]  C. Argyropoulos,et al.  Broadband polarizers based on graphene metasurfaces. , 2016, Optics letters.

[86]  Maokun Li,et al.  A programmable metasurface with dynamic polarization, scattering and focusing control , 2016, Scientific Reports.

[87]  Leszek R. Jaroszewicz,et al.  Perdeuterated liquid crystals for near infrared applications , 2016 .

[88]  Zhangjie Luo,et al.  Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors , 2016 .

[89]  Coskun Kocabas,et al.  Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene , 2016, 1801.04640.

[90]  Pai-Yen Chen,et al.  P T Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces , 2016 .

[91]  Shanguo Huang,et al.  Magnetically tunable metamaterial perfect absorber , 2016 .

[92]  Shuo Liu,et al.  Information entropy of coding metasurface , 2016, Light: Science & Applications.

[93]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[94]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[95]  Sungjoon Lim,et al.  Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator. , 2016, Applied optics.

[96]  Ning Dai,et al.  Tailor the functionalities of metasurfaces based on a complete phase diagram , 2016, 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM).

[97]  Xiang Wan,et al.  Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging , 2016, Scientific Reports.

[98]  Y. Kivshar,et al.  Invited article: Broadband highly-efficient dielectric metadevices for polarization control , 2016 .

[99]  Tian Yi Chen,et al.  Field-programmable beam reconfiguring based on digitally-controlled coding metasurface , 2016, Scientific Reports.

[100]  Andrea Alù,et al.  Recent progress in gradient metasurfaces , 2016 .

[101]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[102]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[103]  G. Shvets,et al.  Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces. , 2015, Nano letters.

[104]  Tingting Li,et al.  A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator , 2015, Scientific Reports.

[105]  Jianguo Tian,et al.  Dynamically Tunable Broadband Infrared Anomalous Refraction Based on Graphene Metasurfaces , 2015 .

[106]  Junghyun Park,et al.  Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers , 2015, Scientific Reports.

[107]  Yandong Gong,et al.  Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface , 2015, Scientific Reports.

[108]  Qiang Cheng,et al.  Terahertz Broadband Low‐Reflection Metasurface by Controlling Phase Distributions , 2015 .

[109]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[110]  Il-Min Lee,et al.  Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer , 2015, Nanotechnology.

[111]  R. Gajić,et al.  Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals , 2015 .

[112]  Shin-Tson Wu,et al.  Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces , 2015, Nature Communications.

[113]  Nikolay I. Zheludev,et al.  Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch , 2015 .

[114]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[115]  Yuancheng Fan,et al.  Tunable Terahertz Meta-Surface with Graphene Cut-Wires , 2015 .

[116]  Eduardo Carrasco,et al.  Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array , 2014, Nanotechnology.

[117]  Y. Kivshar,et al.  Metamaterials tunable with liquid crystals , 2015 .

[118]  Abul K. Azad,et al.  Hybrid metasurface for ultra-broadband terahertz modulation , 2014 .

[119]  Xiaolin Wang,et al.  An Early Cretaceous pterosaur with an unusual mandibular crest from China and a potential novel feeding strategy , 2014, Scientific Reports.

[120]  Riaz R. Haque,et al.  Broadband electro-optical modulator based on transparent conducting oxide. , 2014, Optics letters.

[121]  R. Jakoby,et al.  Voltage-Tunable Artificial Gradient-Index Lens Based on a Liquid Crystal Loaded Fishnet Metamaterial , 2014, IEEE Antennas and Wireless Propagation Letters.

[122]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[123]  M. Kafesaki,et al.  Optically controllable THz chiral metamaterials. , 2014, Optics express.

[124]  Willie J Padilla,et al.  Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications , 2014 .

[125]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[126]  W. Walasik,et al.  Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection. , 2014, Optics letters.

[127]  J. Mosig,et al.  Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices , 2013, Nature Photonics.

[128]  A. Alú,et al.  Terahertz Metamaterial Devices Based on Graphene Nanostructures , 2013, IEEE Transactions on Terahertz Science and Technology.

[129]  Taiichi Otsuji,et al.  Amplification and lasing of terahertz radiation by plasmons in graphene with a planar distributed Bragg resonator , 2013 .

[130]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[131]  Jianguo Tian,et al.  Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses. , 2013, Optics letters.

[132]  Qiang Cheng,et al.  A tunable metamaterial absorber using varactor diodes , 2013 .

[133]  Chennupati Jagadish,et al.  Electro-optical switching by liquid-crystal controlled metasurfaces. , 2013, Optics express.

[134]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[135]  Shiyang Liu,et al.  Magnetically manipulable perfect unidirectional absorber based on nonreciprocal magnetic surface plasmon , 2012 .

[136]  Tunable metamaterials , 2012, 2012 Asia Communications and Photonics Conference (ACP).

[137]  Nikos Pleros,et al.  Merging Plasmonics and Silicon Photonics Towards Greener and Faster “Network-on-Chip” Solutions for Data Centers and High-Performance Computing Systems , 2012 .

[138]  Y. Kivshar,et al.  Metamaterials controlled with light. , 2012, Physical review letters.

[139]  Abul K. Azad,et al.  Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .

[140]  W. Walasik,et al.  Infrared cylindrical cloak in nanosphere dispersed liquid crystal metamaterial. , 2012, Optics letters.

[141]  O. Gordon,et al.  Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire , 2012 .

[142]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[143]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[144]  I. Chatzakis,et al.  Reversible modulation and ultrafast dynamics of terahertz resonances in strongly photoexcited metamaterials , 2011, 1112.6337.

[145]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[146]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[147]  M. Wegener,et al.  Past Achievements and Future Challenges in 3D Photonic Metamaterials , 2011, 1109.0084.

[148]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[149]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[150]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[151]  Kepeng Qiu,et al.  Electrically controllable fishnet metamaterial based on nematic liquid crystal. , 2011, Optics express.

[152]  Ji Zhou,et al.  Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal , 2010 .

[153]  Ranjan Singh,et al.  Tuning the resonance in high-temperature superconducting terahertz metamaterials. , 2010, Physical review letters.

[154]  Ray T. Chen,et al.  Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement , 2010 .

[155]  J. Daniel,et al.  Tunable bilayered metasurface for frequency reconfigurable directive emissions , 2010 .

[156]  Bo O. Zhu,et al.  Switchable metamaterial reflector/absorber for different polarized electromagnetic waves , 2010, 1010.4377.

[157]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[158]  D. Ielmini,et al.  Phase Change Materials , 2009 .

[159]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[160]  Farhan Rana,et al.  Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. , 2008, Nano letters.

[161]  Seokho Yun,et al.  Tunable Frequency Selective Surfaces and Negative-Zero-Positive Index Metamaterials Based on Liquid Crystals , 2008, IEEE Transactions on Antennas and Propagation.

[162]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[163]  C. Mias,et al.  A Varactor-Tunable High Impedance Surface With a Resistive-Lumped-Element Biasing Grid , 2007, IEEE Transactions on Antennas and Propagation.

[164]  Xiao Liang,et al.  Electrically tunable negative permeability metamaterials based on nematic liquid crystals , 2007 .

[165]  Sergei A. Tretyakov,et al.  MEMS‐based high‐impedance surfaces for millimeter and submillimeter wave applications , 2006 .

[166]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[167]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[168]  G. Dewar Minimization of losses in a structure having a negative index of refraction , 2005 .

[169]  Trevor P Martin,et al.  Intelligent Data Engineering and Automated Learning , 2004 .

[170]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .