CONFIRMATION OF A STEEP LUMINOSITY FUNCTION FOR Lyα EMITTERS AT z = 5.7: A MAJOR COMPONENT OF REIONIZATION

We report the first direct and robust measurement of the faint-end slope of the Lyα emitter (LAE) luminosity function (LF) at z = 5.7. Candidate LAEs from a low-spectral-resolution blind search with IMACS on Magellan-Baade were targeted at higher resolution to distinguish high-redshift LAEs from foreground galaxies. All but 2 of our 42 single-emission-line systems have flux F < 2.0 × 10 − 17 ?> ergs s−1 cm−2, making these the faintest emission-lines observed for a z = 5.7 sample with known completeness, an essential property for determining the faint end slope of the LAE LF. We find 13 LAEs as compared to 29 foreground galaxies, in very good agreement with the modeled foreground counts predicted in Dressler et al. that had been used to estimate a faint-end slope of α = −2.0 for the LAE LF. A 32% LAE fraction, LAE/(LAE+foreground) within the flux interval F = 2 − 20 ?> × 10 − 18 ?> ergs s−1 cm−2 constrains the faint end slope of the LF to − 2.35 < &agr; < − 1.95 ?> (1σ). We show how this steep LF should provide, to the limit of our observations, M UV ∼ ?> −16, more than 20% of the flux necessary to maintain ionization at z = 5.7, with a factor of 10 extrapolation in flux reaching more than 50%. This is in addition to the comparable contribution by brighter Lyman Break Galaxies M UV ≲ ?> −18. We suggest that this bodes well for a sufficient supply of Lyman continuum photons by similar, low-mass star-forming galaxies within the reionization epoch at z ≈ 7 ?> , only 250 Myr earlier.

[1]  A. Fontana,et al.  The lack of intense Lyman ~ alpha in ultradeep spectra of z = 7 candidates in GOODS-S : imprint of reionization ? , 2017 .

[2]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[3]  M. Topping,et al.  THE EFFICIENCY OF STELLAR REIONIZATION: EFFECTS OF ROTATION, METALLICITY, AND INITIAL MASS FUNCTION , 2015, 1501.01976.

[4]  C. Leitherer,et al.  THE EFFECTS OF STELLAR ROTATION. II. A COMPREHENSIVE SET OF STARBURST99 MODELS , 2014, 1403.5444.

[5]  K. Shimasaku,et al.  Diffuse Lyα haloes around galaxies at z = 2.2–6.6: implications for galaxy formation and cosmic reionization , 2014, 1403.0732.

[6]  L. Bradley,et al.  THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.

[7]  Z. Haiman,et al.  Evolution in the escape fraction of ionizing photons and the decline in strong Lyα emission from z > 6 galaxies , 2014, 1401.7676.

[8]  M. Jarvis,et al.  Spectroscopy of z ∼ 7 candidate galaxies: using Lyman α to constrain the neutral fraction of hydrogen in the high-redshift universe , 2013, 1311.0057.

[9]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[10]  Massimo Stiavelli,et al.  THE CHANGING Lyα OPTICAL DEPTH IN THE RANGE 6 < z < 9 FROM THE MOSFIRE SPECTROSCOPY OF Y-DROPOUTS , 2013 .

[11]  M. Dijkstra,et al.  Empirical constraints on the star formation and redshift dependence of the Lyα ‘effective’ escape fraction , 2013, 1305.3613.

[12]  Ipac,et al.  ULTRA-FAINT ULTRAVIOLET GALAXIES AT z ∼ 2 BEHIND THE LENSING CLUSTER A1689: THE LUMINOSITY FUNCTION, DUST EXTINCTION, AND STAR FORMATION RATE DENSITY , 2013, 1305.2413.

[13]  R. Ellis,et al.  KECK SPECTROSCOPY OF GRAVITATIONALLY LENSED z ≃ 4 GALAXIES: IMPROVED CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS , 2013, 1304.7015.

[14]  Mark Lacy,et al.  VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman α emission at z = 8.55★ , 2013, 1301.4477.

[15]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[16]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[17]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[18]  Brian Siana,et al.  A REFINED ESTIMATE OF THE IONIZING EMISSIVITY FROM GALAXIES AT z ≃ 3: SPECTROSCOPIC FOLLOW-UP IN THE SSA22a FIELD , 2012, 1210.2393.

[19]  M. Jarvis,et al.  No evidence for Lyman emission in spectroscopy of z > 7 candidate galaxies , 2012, 1208.5987.

[20]  J. Dunlop,et al.  A remarkably high fraction of strong Lyα emitters amongst luminous redshift 6.0 < z < 6.5 Lyman-break galaxies in the UKIDSS Ultra-Deep Survey , 2012 .

[21]  R. Bouwens,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.

[22]  R. Ellis,et al.  KECK SPECTROSCOPY OF FAINT 3 < z < 7 LYMAN BREAK GALAXIES. III. THE MEAN ULTRAVIOLET SPECTRUM AT z ≃ 4 , 2011, 1111.5102.

[23]  P. McCarthy,et al.  THE FAINT-END SLOPE OF THE REDSHIFT 5.7 Lyα LUMINOSITY FUNCTION, , 2011, 1111.2354.

[24]  Cambridge,et al.  On Lyα emission in z ~ 3–6 UV-selected galaxies , 2011, 1110.4398.

[25]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[26]  Hooshang Nayyeri,et al.  SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.

[27]  R. Ellis,et al.  KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8 , 2011, 1107.1261.

[28]  P. McCarthy,et al.  DETECTIONS OF FAINT Lyα EMITTERS AT z = 5.7: GALAXY BUILDING BLOCKS AND ENGINES OF REIONIZATION , 2011, 1104.2900.

[29]  S. Okamura,et al.  COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.

[30]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[31]  C. C. Steidel,et al.  NARROWBAND IMAGING OF ESCAPING LYMAN-CONTINUUM EMISSION IN THE SSA22 FIELD, , 2011, 1102.0286.

[32]  Ulrich Hopp,et al.  THE HETDEX PILOT SURVEY. II. THE EVOLUTION OF THE Lyα ESCAPE FRACTION FROM THE ULTRAVIOLET SLOPE AND LUMINOSITY FUNCTION OF 1.9 , 2010, 1011.0430.

[33]  Iap,et al.  ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.

[34]  M. Ouchi,et al.  KECK SPECTROSCOPY OF FAINT 3>z>7 LYMAN BREAK GALAXIES: A HIGH FRACTION OF LINE EMITTERS AT REDSHIFT SIX , 2010, 1009.5471.

[35]  S. Okamura,et al.  COMPLETING THE CENSUS OF Ly alpha EMITTERS AT THE REIONIZATION EPOCH , 2011 .

[36]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION , 2011, 1107.1376.

[37]  A. Fontana,et al.  THE LACK OF INTENSE Lyα IN ULTRADEEP SPECTRA OF z = 7 CANDIDATES IN GOODS-S: IMPRINT OF REIONIZATION? , 2010, 1010.2754.

[38]  P. Capak,et al.  AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS, , 2010, 1009.1144.

[39]  Richard S. Ellis,et al.  Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.

[40]  C. Steidel,et al.  THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.

[41]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[42]  Alan Dressler,et al.  A Magellan IMACS Spectroscopic Search for Lyα-emitting Galaxies at Redshift 5.7 , 2008, 0802.2393.

[43]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[44]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[45]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[46]  B. Garilli,et al.  The [O II] λ3727 Luminosity Function and Star Formation Rate at z ≈ 1.2 in the COSMOS 2 Square Degree Field and the Subaru Deep Field , 2007, astro-ph/0703065.

[47]  S. Okamura,et al.  The Cosmic Evolution Survey (COSMOS): Subaru Observations of the HST Cosmos Field , 2006, astro-ph/0612295.

[48]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[49]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[50]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.