Musings around the geometry of interaction, and coherence

We introduce the Danos?Regnier category DR(M) of a linear inverse monoid M, as a categorical description of geometries of interaction (GOI) inspired from the weight algebra. The natural setting for GOI is that of a so-called weakly Cantorian linear inverse monoid, in which case DR(M) is a kind of symmetrized version of the classical Abramsky?Haghverdi?Scott construction of a weak linear category from a GOI situation. It is well-known that GOI is perfectly suited to describe the multiplicative fragment of linear logic, and indeed DR(M) will be a ?-autonomous category in this case. It is also well-known that the categorical interpretation of the other linear connectives conflicts with GOI interpretations. We make this precise, and show that DR(M) has no terminal object, no Cartesian product of any two objects, and no exponential?whatever M is, unless M is trivial. However, a form of coherence completion of DR(M) a la Hu?Joyal (which for additives resembles a layered approach a la Hughes?van Glabbeek), provides a model of full classical linear logic, as soon as M is weakly Cantorian. One finally notes that Girard?s notion of coherence is pervasive, and instrumental in every aspect of this work.

[1]  Paul-André Melliès Categorical models of linear logic revisited , 2002 .

[2]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[3]  Vincent Danos,et al.  Directed Virtual Reductions , 1996, CSL.

[4]  Thomas Ehrhard,et al.  Believe it or not, AJM's games model is a model of classical linear logic , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[5]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[6]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[7]  Paul-André Melliès Asynchronous games 4: a fully complete model of propositional linear logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[8]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[9]  J. Fountain,et al.  Covers for monoids , 2004 .

[10]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[11]  Hongde Hu,et al.  Coherence completions of categories and their enriched softness , 1997, MFPS.

[12]  B. Steinberg A topological approach to inverse and regular semigroups , 2003 .

[13]  Glynn Winskel,et al.  Bistructures, bidomains, and linear logic , 2000, Proof, Language, and Interaction.

[14]  Uday S. Reddy,et al.  Objects and Classes in Algol-Like Languages , 2002, Inf. Comput..

[15]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[16]  André Joyal,et al.  Coherence Completions of Categories , 1999, Theor. Comput. Sci..

[17]  Michel Parigot,et al.  Classical Proofs as Programs , 1993, Kurt Gödel Colloquium.

[18]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[19]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[20]  J.M.G.G. de Nivelle Ordering Refinements of Resolution , 1995 .

[21]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[22]  Olivier Laurent A Token Machine for Full Geometry of Interaction , 2001, TLCA.

[23]  Mario Petrich,et al.  Inverse semigroups , 1985 .

[24]  J. Girard,et al.  Proofs and types , 1989 .

[25]  Vincent Danos,et al.  Local and asynchronous beta-reduction , 1993, LICS 1993.

[26]  M. Barr,et al.  THE SEPARATED EXTENSIONAL CHU CATEGORY , 1998 .

[27]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[28]  M. Lawson Inverse Semigroups, the Theory of Partial Symmetries , 1998 .

[29]  Rob J. van Glabbeek,et al.  Proof nets for unit-free multiplicative-additive linear logic (extended abstract) , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[30]  Pierre-Louis Curien,et al.  Categorical Combinators , 1986, Inf. Control..

[31]  Jean-Yves Girard,et al.  Towards a geometry of interaction , 1989 .

[32]  Philip J. Scott,et al.  A categorical model for the geometry of interaction , 2006, Theor. Comput. Sci..

[33]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[34]  Vincent Danos,et al.  Reversible, Irreversible and Optimal lambda-Machines , 1999, Theor. Comput. Sci..

[35]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[36]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains , 1979, Semantics of Concurrent Computation.

[37]  J. Girard Geometry of interaction III: accommodating the additives , 1995 .

[38]  Harry G. Mairson,et al.  Proofnets and Context Semantics for the Additives , 2002, CSL.

[39]  Samson Abramsky,et al.  Geometry of Interaction and linear combinatory algebras , 2002, Mathematical Structures in Computer Science.

[40]  Vincent Danos,et al.  Reversible, Irreversible and Optimal Lambda-machines , 1999, Linear Logic Tokyo Meeting.

[41]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[42]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[43]  Jean-Yves Girard,et al.  Geometry of interaction 2: deadlock-free algorithms , 1990, Conference on Computer Logic.

[44]  Matthias Felleisen,et al.  A Syntactic Theory of Sequential Control , 1987, Theor. Comput. Sci..

[45]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[46]  N. S. Barnett,et al.  Private communication , 1969 .

[47]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[48]  Samson Abramsky,et al.  A Structural Approach to Reversible Computation , 2005, Theor. Comput. Sci..

[49]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[50]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[51]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[52]  Ivan M. Havel,et al.  Strict Deterministic Grammars , 1973, J. Comput. Syst. Sci..