Oxygen Diffusion in Yttria‐Stabilized Zirconia: A New Simulation Model
暂无分享,去创建一个
[1] S. Phillpot,et al. Mechanism of the Cubic‐to‐Tetragonal Phase Transition in Zirconia and Yttria‐Stabilized Zirconia by Molecular‐Dynamics Simulation , 2004 .
[2] A. Heuer,et al. Microstructural evolution and microhardness in zirconia-based EB-PVD thermal barrier coatings , 2003 .
[3] D. McComb,et al. Theory of the phases and atomistic structure of yttria-doped zirconia , 2002 .
[4] David J. Srolovitz,et al. Kinetic Monte Carlo Simulation of Chemical Vapor Deposition , 2002 .
[5] Robert Allan Jackson,et al. Experimental and theoretical investigation of oxygen diffusion in stabilised zirconia , 2002 .
[6] Simon R. Phillpot,et al. Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. , 2001 .
[7] Gerbrand Ceder,et al. First-principles theory of ionic diffusion with nondilute carriers , 2001 .
[8] D. Vanderbilt,et al. Phonons and lattice dielectric properties of zirconia , 2001, cond-mat/0108491.
[9] R. Grimes,et al. Defect cluster formation in M2O3-doped cubic ZrO2 , 2000 .
[10] Dongming Zhu,et al. Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia Based Thermal Barrier Coatings , 1998 .
[11] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[12] Kaxiras,et al. Adatom diffusion by orchestrated exchange on semiconductor surfaces. , 1994, Physical review letters.
[13] Lee,et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.
[14] F. Shimojo,et al. Molecular Dynamics Studies of Yttria Stabilized Zirconia. II. Microscopic Mechanism of Oxygen Diffusion , 1992 .
[15] K. Ogawa,et al. Structure Images of Y2O3 Corresponding to the Shift of Y-atoms , 1992 .
[16] F. Shimojo,et al. Molecular dynamics studies of yttria stabilized zirconia. I: Structure and oxygen diffusion , 1992 .
[17] D. Vanderbilt,et al. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.
[18] S. J. Rothman,et al. EXAFS study of yttria stabilized cubic zirconia , 1988 .
[19] T. Suemoto,et al. Composition dependence of the ionic diffusion coefficients in yttria-stabilized zirconias , 1986 .
[20] C. Catlow,et al. EXAFS Study of Yttria‐Stabilized Zirconia , 1986 .
[21] Masanori Kato,et al. Electrical conductivity of yttria-stabilized zirconia single crystals , 1985 .
[22] Car,et al. Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.
[23] P. Aldebert,et al. Structure and Ionic Mobility of Zirconia at High Temperature , 1985 .
[24] J. Cohen,et al. X-Ray Diffraction Study of Zr(Ca,Y)O2-x. II. Local Ionic Arrangements, , 1980 .
[25] J. Cohen,et al. X-ray diffraction study of Zr(Ca,Y)O2-x. I. The average structure , 1979 .
[26] H. Rossell,et al. A microdomain description of defective fluorite-type phasesCaxM1−xO2−x(M =Zr, Hf; x = 0.1–0.2) , 1975 .
[27] B. Fender,et al. The structure of cubic ZrO2:YO1.5 solid solutions by neutron scattering , 1974 .
[28] G. Murch,et al. Diffusion correlation effects in non-stoichiometric solids , 1973 .
[29] R. Casselton. Low field DC conduction in yttria-stabilized zirconia , 1970 .
[30] R. Howard. Random-Walk Method for Calculating Correlation Factors: Tracer Diffusion by Divacancy and Impurity-Vacancy Pairs in Cubic Crystals , 1966 .
[31] D. Strickler,et al. Ionic Conductivity of Cubic Solid Solutions in the System CaO—Y2O3—ZrO2 , 1964 .
[32] J. Mullen,et al. Effect of Bardeen-Herring Correlation on Vacancy Diffusion in Anisotropic Crystals , 1961 .
[33] C. Wagner,et al. Measurements on Galvanic Cells Involving Solid Electrolytes , 1957 .
[34] C. Wagner. Über den Mechanismus der elektrischen Stromleitung im Nernststift , 1943, Naturwissenschaften.
[35] Michele Parrinello,et al. Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia , 1999 .
[36] N. Nicoloso,et al. MC-study of the anomalous conductivity of fluorite-type solid oxide solutions , 1997 .
[37] Alastair N. Cormack,et al. A computer simulation study of the defect structure of calcia-stabilized zirconia , 1990 .
[38] C. Catlow,et al. A new hybrid scheme of computer simulation based on Hades and Monte Carlo: Application to ionic conductivity in Y3+ doped CeO2 , 1986 .
[39] K. Ando,et al. Oxygen Self-Diffusion in Cubic ZrO2 Solid Solutions , 1985 .
[40] P. Durán,et al. Subsolidus Phase Equilibria and Ordering in the System ZrO2‐Y2O3 , 1983 .
[41] B. Alder,et al. Persistence of vacancy motion in hard sphere crystals , 1971 .
[42] Y. Haven,et al. Correlation factors for diffusion in solids , 1956 .