Oxygen Diffusion in Yttria‐Stabilized Zirconia: A New Simulation Model

We present a multiscale modeling approach to study oxygen diffusion in cubic yttria-stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long-time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation-dopant-induced correlation effects in support of the above explanation.

[1]  S. Phillpot,et al.  Mechanism of the Cubic‐to‐Tetragonal Phase Transition in Zirconia and Yttria‐Stabilized Zirconia by Molecular‐Dynamics Simulation , 2004 .

[2]  A. Heuer,et al.  Microstructural evolution and microhardness in zirconia-based EB-PVD thermal barrier coatings , 2003 .

[3]  D. McComb,et al.  Theory of the phases and atomistic structure of yttria-doped zirconia , 2002 .

[4]  David J. Srolovitz,et al.  Kinetic Monte Carlo Simulation of Chemical Vapor Deposition , 2002 .

[5]  Robert Allan Jackson,et al.  Experimental and theoretical investigation of oxygen diffusion in stabilised zirconia , 2002 .

[6]  Simon R. Phillpot,et al.  Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. , 2001 .

[7]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[8]  D. Vanderbilt,et al.  Phonons and lattice dielectric properties of zirconia , 2001, cond-mat/0108491.

[9]  R. Grimes,et al.  Defect cluster formation in M2O3-doped cubic ZrO2 , 2000 .

[10]  Dongming Zhu,et al.  Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia Based Thermal Barrier Coatings , 1998 .

[11]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[12]  Kaxiras,et al.  Adatom diffusion by orchestrated exchange on semiconductor surfaces. , 1994, Physical review letters.

[13]  Lee,et al.  Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.

[14]  F. Shimojo,et al.  Molecular Dynamics Studies of Yttria Stabilized Zirconia. II. Microscopic Mechanism of Oxygen Diffusion , 1992 .

[15]  K. Ogawa,et al.  Structure Images of Y2O3 Corresponding to the Shift of Y-atoms , 1992 .

[16]  F. Shimojo,et al.  Molecular dynamics studies of yttria stabilized zirconia. I: Structure and oxygen diffusion , 1992 .

[17]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[18]  S. J. Rothman,et al.  EXAFS study of yttria stabilized cubic zirconia , 1988 .

[19]  T. Suemoto,et al.  Composition dependence of the ionic diffusion coefficients in yttria-stabilized zirconias , 1986 .

[20]  C. Catlow,et al.  EXAFS Study of Yttria‐Stabilized Zirconia , 1986 .

[21]  Masanori Kato,et al.  Electrical conductivity of yttria-stabilized zirconia single crystals , 1985 .

[22]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[23]  P. Aldebert,et al.  Structure and Ionic Mobility of Zirconia at High Temperature , 1985 .

[24]  J. Cohen,et al.  X-Ray Diffraction Study of Zr(Ca,Y)O2-x. II. Local Ionic Arrangements, , 1980 .

[25]  J. Cohen,et al.  X-ray diffraction study of Zr(Ca,Y)O2-x. I. The average structure , 1979 .

[26]  H. Rossell,et al.  A microdomain description of defective fluorite-type phasesCaxM1−xO2−x(M =Zr, Hf; x = 0.1–0.2) , 1975 .

[27]  B. Fender,et al.  The structure of cubic ZrO2:YO1.5 solid solutions by neutron scattering , 1974 .

[28]  G. Murch,et al.  Diffusion correlation effects in non-stoichiometric solids , 1973 .

[29]  R. Casselton Low field DC conduction in yttria-stabilized zirconia , 1970 .

[30]  R. Howard Random-Walk Method for Calculating Correlation Factors: Tracer Diffusion by Divacancy and Impurity-Vacancy Pairs in Cubic Crystals , 1966 .

[31]  D. Strickler,et al.  Ionic Conductivity of Cubic Solid Solutions in the System CaO—Y2O3—ZrO2 , 1964 .

[32]  J. Mullen,et al.  Effect of Bardeen-Herring Correlation on Vacancy Diffusion in Anisotropic Crystals , 1961 .

[33]  C. Wagner,et al.  Measurements on Galvanic Cells Involving Solid Electrolytes , 1957 .

[34]  C. Wagner Über den Mechanismus der elektrischen Stromleitung im Nernststift , 1943, Naturwissenschaften.

[35]  Michele Parrinello,et al.  Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia , 1999 .

[36]  N. Nicoloso,et al.  MC-study of the anomalous conductivity of fluorite-type solid oxide solutions , 1997 .

[37]  Alastair N. Cormack,et al.  A computer simulation study of the defect structure of calcia-stabilized zirconia , 1990 .

[38]  C. Catlow,et al.  A new hybrid scheme of computer simulation based on Hades and Monte Carlo: Application to ionic conductivity in Y3+ doped CeO2 , 1986 .

[39]  K. Ando,et al.  Oxygen Self-Diffusion in Cubic ZrO2 Solid Solutions , 1985 .

[40]  P. Durán,et al.  Subsolidus Phase Equilibria and Ordering in the System ZrO2‐Y2O3 , 1983 .

[41]  B. Alder,et al.  Persistence of vacancy motion in hard sphere crystals , 1971 .

[42]  Y. Haven,et al.  Correlation factors for diffusion in solids , 1956 .