Influence of precipitation, landscape and hydrogeomorphic lake features on pelagic allochthonous indicators in two connected ultraoligotrophic lakes of North Patagonia.

[1]  M. Perga,et al.  Food quality of anemophilous plant pollen for zooplankton , 2011 .

[2]  S. Carpenter,et al.  Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen , 2011, Proceedings of the National Academy of Sciences.

[3]  Serhiy Morozov,et al.  A Distributed, Architecture-Centric Approach to Computing Accurate Recommendations from Very Large and Sparse Datasets , 2011 .

[4]  H. Laudon,et al.  Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. , 2010, Ecology letters.

[5]  Extensive diel fish migrations in a deep ultraoligotrophic lake of Patagonia Argentina , 2010, Hydrobiologia.

[6]  John P. Smol,et al.  Lakes and reservoirs as sentinels, integrators, and regulators of climate change , 2009 .

[7]  G. Weyhenmeyer,et al.  Lakes as sentinels of climate change , 2009, Limnology and oceanography.

[8]  N. Kamjunke,et al.  Trophic interactions of the pelagic ciliate Stentor spp. in North Patagonian lakes , 2009 .

[9]  J. Buttle,et al.  Influence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland- and upland-draining streams , 2008 .

[10]  Linda C. Bacon,et al.  An empirical evaluation of the nutrient‐color paradigm for lakes , 2008 .

[11]  C. Callieri,et al.  Light versus food supply as factors modulating niche partitioning in two pelagic mixotrophic ciliates , 2008 .

[12]  C. Stow,et al.  Recent water level declines in the Lake Michigan-Huron system. , 2008, Environmental science & technology.

[13]  S. Carpenter,et al.  Does terrestrial organic carbon subsidize the planktonic food web in a clear‐water lake? , 2007 .

[14]  F. Pereyra Geomorfología urbana de San Carlos de Bariloche y su influencia en los peligros naturales, Rio Negro , 2007 .

[15]  L. Tranvik,et al.  Terrestrial carbon and intraspecific size-variation shape lake ecosystems. , 2007, Trends in ecology & evolution.

[16]  C. Reynolds,et al.  Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes , 2007 .

[17]  M. Jansson,et al.  Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake , 2007, Aquatic Sciences.

[18]  E. Pulido-Villena,et al.  Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach , 2005 .

[19]  Stephen R. Carpenter,et al.  ECOSYSTEM SUBSIDIES: TERRESTRIAL SUPPORT OF AQUATIC FOOD WEBS FROM 13C ADDITION TO CONTRASTING LAKES , 2005 .

[20]  L. Håkanson The importance of lake morphometry and catchment characteristics in limnology – ranking based on statistical analyses , 2005, Hydrobiologia.

[21]  D. Hongve,et al.  Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water – a result of increased precipitation? , 2004, Aquatic Sciences.

[22]  M. Pace,et al.  Autochthonous versus allochthonous carbon sources of bacteria: Results from whole‐lake 13C addition experiments , 2004 .

[23]  S. Carpenter,et al.  Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs , 2004, Nature.

[24]  Horacio Zagarese,et al.  Surface avoidance by freshwater zooplankton: Field evidence on the role of ultraviolet radiation , 2004 .

[25]  Horacio Zagarese,et al.  Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes. , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[26]  Horacio Zagarese,et al.  Modulation of UVR exposure and effects by vertical mixing and advection , 2003 .

[27]  M. Jansson,et al.  Control of zooplankton dependence on allochthonous organic carbon in humic and clear‐water lakes in northern Sweden , 2003 .

[28]  B. Modenutti,et al.  Summer population development and diurnal vertical distribution of dinoflagellates in an ultraoligotrophic Andean lake (Patagonia, Argentina) , 2002 .

[29]  S. Carpenter,et al.  Pathways of organic carbon utilization in small lakes: Results from a whole‐lake 13C addition and coupled model , 2002 .

[30]  C. Queimaliños The role of phytoplanktonic size fractions in the microbial food webs in two north Patagonian lakes (Argentina) , 2002 .

[31]  B. Modenutti,et al.  Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes , 2002 .

[32]  Jonathan J. Cole,et al.  Synchronous variation of dissolved organic carbon and color in lakes , 2002 .

[33]  S. Woelfl,et al.  Chlorella‐bearing ciliates dominate in an oligotrophic North Patagonian lake (Lake Pirehueico, Chile): abundance, biomass and symbiotic photosynthesis , 2002 .

[34]  Horacio Zagarese,et al.  Photodegradation of natural organic matter exposed to fluctuating levels of solar radiation. , 2001, Journal of photochemistry and photobiology. B, Biology.

[35]  B. Modenutti,et al.  Feeding of Boeckella gracilipes (Copepoda, Calanoida) on ciliates and phytoflagellates in an ultraoligotrophic Andean lake , 2001 .

[36]  Roger Jones,et al.  Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis , 2001 .

[37]  Stefan Bertilsson,et al.  Seasonal photoreactivity of dissolved organic matter from lakes with contrasting humic content , 2000 .

[38]  M. Jansson,et al.  Bacterioplankton Production in Humic Lake Örträsket in Relation to Input of Bacterial Cells and Input of Allochthonous Organic Carbon , 2000, Microbial Ecology.

[39]  P. Soranno,et al.  Spatial Variation among Lakes within Landscapes: Ecological Organization along Lake Chains , 1999, Ecosystems.

[40]  B. Modenutti,et al.  Symbiotic association of the ciliate Ophrydium naumanni with Chlorella causing a deep chlorophyll a maximum in an oligotrophic South Andes lake , 1999 .

[41]  Osvaldo E. Sala,et al.  The climate of Patagonia: general patterns and controls on biotic processes , 1998 .

[42]  M. Diéguez,et al.  Structure and dynamics of food webs in Andean lakes , 1998 .

[43]  J. Grey,et al.  An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food web in Loch Ness , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  L. Tranvik,et al.  Aquatic humic substances : ecology and biogeochemistry , 1998 .

[45]  L. Tranvik,et al.  Aquatic Humic Substances , 1998, Ecological Studies.

[46]  K. Webster,et al.  The influence of landscape position on lakes in northern Wisconsin , 1997 .

[47]  Ulrich Sommer,et al.  Limnoecology: the Ecology of Lakes and Streams , 1997 .

[48]  P. Giorgio Ecosystem‐specific patterns in the relationship between zooplankton and POM or microplankton del13C , 1996 .

[49]  G. Kling,et al.  Sources and partitioning of organic matter in pelagic microbial food web inferred from the isotopic composition (d13C and d15N) of zooplankton species , 1996 .

[50]  Craig E. Williamson,et al.  The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon , 1995 .

[51]  S. Chillrud,et al.  Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (39.5°-42° S; 71° W) (Rep. Argentina) , 1993 .

[52]  Roger I. Jones,et al.  The influence of humic substances on lacustrine planktonic food chains. , 1992 .

[53]  Lyse Godbout,et al.  The humic content of lake water and its relationship to watershed and lake morphometry , 1989 .

[54]  M. Iriondo Quaternary lakes of Argentina , 1989 .

[55]  H. Bottrell A review of some problems in zooplankton production studies , 1976 .

[56]  R. Wetzel Limnology: Lake and River Ecosystems , 1975 .