The dynamic stability of an elastic column

Abstract Lyapunov's second method is used to investigate the stability of the rectilinear equilibrium modes of a non-linearly elastic thin rod (column) compressed at its end. Stability here is implied relative to certain integral characteristics, of the type of norms in Sobolev spaces; the analysis is carried out for all values of the problem parameter except the bifurcation values. The realm of problems connected with the Lagrange-Dirichlet equilibrium stability theorem and its converse involves specific difficulties when considered in the infinite-dimensional case: stability in infinite-dimensional systems is investigated relative to certain integral characteristics such as norms /1/, and as the latter may be chosen with a certain degree of arbitrariness, different choices may result in different stability results. On the other hand, there is no relaxation of any of the difficulties encountered in the case of a finite number of degrees of freedom. We shall consider a certain natural mechanical system with a finite number of degrees of freedom. If the first non-trivial form of the potential energy expansion is positive-definite, the equilibrium position is stable. A similar statement has been proved for infinitely many dimensions as well /1–3/, using Lyapunov's direct method, and the total energy may play the role of the Lyapunov function. The situation with respect to instability is more complex. In the finite-dimensional case, if the first non-trivial form of the potential energy expansion may take negative values, instability may be demonstrated in many cases by means of a function proposed by Chetayev in /4/. A general theorem has been proved /1/ for instability in infinitely many dimensions, relying on an analogue of Chetayev's function. Such functions have also been used /5, 6/ to prove the instability of equilibrium in specific linear systems with an infinite number of degrees of freedom. However, Chetayev's functions /4/ are not suitable tools to prove the instability of equilibrium in most non-linear systems. Another “Chetayev function”, which is actually a perturbed form of Chetayev's original function from /4/, has been proposed /7/, and it has been used to prove instability when the equilibrium position is an isolated critical point of the first non-trivial form of the potential energy expansion. The majority of problems concerning the onset of instability of equilibrium configurations of elastic systems have been considered from a quasistatic point of view (see, e.g., /8, 9/). Problems of elastic stability and instability were considered in a dynamical setting in /2, 5/, where stability was investigated by Lyapunov's direct method. However, most of the results obtained in this branch of the field concern linear systems, and there are extremely few publications dealing with the onset of instability in non-linear elastic systems using Lyapunov's direct method. This is because in an unstable elastic system the quadratic part of the potential energy may change sign, and therefore the analogues of Chetayev's function from /4/ are not usually suitable for solving these problems. Dynamic instability has been studied or a specific non-linearly elastic system /10/, with the fact of instability established by using an analogue of the Chetayev function from /7/. This paper presents one more example of a study of dynamic instability crried out for a non-linearly elastic system by Lyapunov's direct method.