Different metal coordination in sub- and super-critical fluids: Do molybdenum(IV) chloride complexes contribute to mass transfer in magmatic systems?

[1]  J. Brugger,et al.  Speciation and thermodynamic properties of La(III)-Cl complexes in hydrothermal fluids: a combined molecular dynamics and in situ X-ray absorption spectroscopy study , 2022, Geochimica et Cosmochimica Acta.

[2]  S. Niedermann,et al.  A geochemical study of the Sweet Home mine, Colorado Mineral Belt, USA: formation of deep hydrothermal vein–type molybdenum greisen and base metal mineralization , 2022, Mineralium Deposita.

[3]  J. Brugger,et al.  Yttrium Speciation in Sulfate-Rich Hydrothermal Ore-Forming Fluids , 2022, Goldschmidt Abstracts.

[4]  David J. Bettinardi,et al.  Speciation of Molybdenum(VI) in Chloride Media at Elevated Mo Concentrations , 2020, ACS omega.

[5]  J. Brugger,et al.  The role of sulfur in molybdenum transport in hydrothermal fluids: Insight from in situ synchrotron XAS experiments and molecular dynamics simulations , 2020 .

[6]  J. Brugger,et al.  Yttrium complexation and hydration in chloride-rich hydrothermal fluids: A combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study , 2020, Geochimica et Cosmochimica Acta.

[7]  S. Jahn,et al.  Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations , 2020 .

[8]  A. Williams-Jones,et al.  An Experimental Study of the Solubility and Speciation of MoO3(s) in Hydrothermal Fluids at Temperatures up to 350°C , 2020 .

[9]  Alessandro Laio,et al.  Using metadynamics to explore complex free-energy landscapes , 2020 .

[10]  J. Brugger,et al.  Gold solubility in alkaline and ammonia-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations , 2020 .

[11]  Jeffrey M. Dick,et al.  CHNOSZ: Thermodynamic Calculations and Diagrams for Geochemistry , 2019, Front. Earth Sci..

[12]  D. Sverjensky,et al.  Extended Deep Earth Water Model for predicting major element mantle metasomatism , 2019, Geochimica et Cosmochimica Acta.

[13]  A. Leal,et al.  Thermodynamic Properties of Aqueous Species Calculated Using the HKF Model: How Do Different Thermodynamic and Electrostatic Models for Solvent Water Affect Calculated Aqueous Properties? , 2019, Geofluids.

[14]  R. Rudnick,et al.  Geochemistry of molybdenum in the continental crust , 2018, Geochimica et Cosmochimica Acta.

[15]  T. P. Dadze,et al.  Solubility of MoO3 in Aqueous Acid Chloride-Bearing Solutions at 573 K , 2018 .

[16]  J. Gale,et al.  The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to 700 °C, 60 kbar) by ab initio molecular dynamics simulations , 2018 .

[17]  H. Yi,et al.  Structure evolution of mononuclear tungsten and molybdenum species in the protonation process: Insight from FPMD and DFT calculations , 2018 .

[18]  J. Brugger,et al.  A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? , 2016 .

[19]  J. Brugger,et al.  Speciation and thermodynamic properties of zinc in sulfur-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy , 2016 .

[20]  M. Gillan,et al.  Perspective: How good is DFT for water? , 2016, The Journal of chemical physics.

[21]  A. Audétat Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado , 2015 .

[22]  J. Brugger,et al.  Palladium complexation in chloride- and bisulfide-rich fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy , 2015 .

[23]  A. Burgisser,et al.  Pre-Eruptive Conditions of the Hideaway Park Topaz Rhyolite: Insights into Metal Source and Evolution of Magma Parental to the Henderson Porphyry Molybdenum Deposit, Colorado , 2015 .

[24]  J. Brugger,et al.  Zinc complexation in chloride-rich hydrothermal fluids (25-600°C): A thermodynamic model derived from ab initio molecular dynamics , 2015 .

[25]  J. Brugger,et al.  Metal complexation and ion hydration in low density hydrothermal fluids: Ab initio molecular dynamics simulation of Cu(I) and Au(I) in chloride solutions (25-1000 C, 1-5000 bar) , 2014 .

[26]  J. Hazemann,et al.  Speciation and thermodynamic properties of manganese(II) chloride complexes in hydrothermal fluids: In situ XAS study , 2014 .

[27]  D. Sverjensky,et al.  Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C , 2014 .

[28]  Jun Cheng,et al.  Solution Structures and Acidity Constants of Molybdic Acid , 2013 .

[29]  J. Fitts,et al.  Molybdenum reduction in a sulfidic lake: Evidence from X-ray absorption fine-structure spectroscopy and implications for the Mo paleoproxy , 2013 .

[30]  J. Brugger,et al.  Ab initio molecular dynamics simulation and free energy exploration of copper(I) complexation by chloride and bisulfide in hydrothermal fluids , 2013 .

[31]  Yuan Tian,et al.  Speciation of nickel (II) chloride complexes in hydrothermal fluids: In situ XAS study , 2012 .

[32]  Xiancai Lu,et al.  First-principles molecular dynamics study of stepwise hydrolysis reactions of Y3 + cations , 2012 .

[33]  Yuan Tian,et al.  An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385 °C and 600 bar , 2012 .

[34]  Ivano Tavernelli,et al.  Structure and Dynamics of Liquid Water from ab Initio Molecular Dynamics-Comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals Corrections. , 2012, Journal of chemical theory and computation.

[35]  J. Hazemann,et al.  Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440 degrees C and 600 bar: An in-situ XAS study , 2011 .

[36]  T. Seward,et al.  Molybdic acid ionisation under hydrothermal conditions to 300 °C , 2010 .

[37]  Yung Ngothai,et al.  Probing ore deposits formation: New insights and challenges from synchrotron and neutron studies , 2010 .

[38]  J. Hazemann,et al.  In-situ X-ray absorption study of Iron(II) speciation in brines up to supercritical conditions , 2009 .

[39]  A. Williams-Jones,et al.  The solubility of molybdenum dioxide and trioxide in HCl-bearing water vapour at 350 °C and pressures up to 160 bars , 2008 .

[40]  T. Ulrich,et al.  An experimental study of the solubility of molybdenum in H2O and KCl–H2O solutions from 500 °C to 800 °C, and 150 to 300 MPa , 2008 .

[41]  T. Driesner,et al.  The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl , 2007 .

[42]  T. Driesner The system H2O–NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl , 2007 .

[43]  Y. V. Kondrat’ev,et al.  Mononuclear, polynuclear, and cluster complexes of molybdenum and their reactions as models of biochemical systems and processes , 2007 .

[44]  Joël Brugger,et al.  BeerOz, a set of Matlab routines for the quantitative interpretation of spectrophotometric measurements of metal speciation in solution , 2007, Comput. Geosci..

[45]  L. Spiccia,et al.  UV–Vis spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl solutions at 25–90 °C , 2006 .

[46]  J. Hazemann,et al.  Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. , 2005, The Journal of chemical physics.

[47]  Régis Pomès,et al.  Absolute free energy calculations by thermodynamic integration in four spatial dimensions. , 2005, The Journal of chemical physics.

[48]  L. B. Gustafson,et al.  Geology of the Chuquicamata Mine: A Progress Report , 2001 .

[49]  M. Sprik Computation of the pK of liquid water using coordination constraints , 2000 .

[50]  J. Rehr,et al.  XAFS Debye-Waller factors in aqueous Cr+3 from molecular dynamics. , 1999, Journal of synchrotron radiation.

[51]  Michiel Sprik,et al.  Free energy from constrained molecular dynamics , 1998 .

[52]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[53]  J. Webster Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport , 1997 .

[54]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[55]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[56]  I. Watanabe,et al.  Studies on the structure of molybdenum(VI) in acidic solution by XANES and EXAFS , 1993 .

[57]  G. Brown,et al.  Kinetics and mechanism of ligand exchange of Au (III), Zn(II), and Cd(II) chlorides in aqueous solution: An NMR study from 28–98°C , 1993 .

[58]  H. Keppler,et al.  Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O−HCl and haplogranite-H2O−HF , 1991 .

[59]  E. Oelkers,et al.  Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions , 1990 .

[60]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[61]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[62]  D. Crerar,et al.  Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen- tite-molybdenite in H 2 O-NaCl-CO 2 solutions from 200 degrees to 350 degrees C degrees , 1987 .

[63]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[64]  D. Crerar,et al.  Spectra and coordination changes of transition metals in hydrothermal solutions: Implications for ore genesis , 1985 .

[65]  H. D. Holland,et al.  The partitioning of copper and molybdenum between silicate melts and aqueous fluids , 1984 .

[66]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[67]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[68]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[69]  R. Creaser,et al.  Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada , 2001 .