Silicon Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells

We report work progress on the growth of Si quantum dots in different matrices for future photovoltaic applications. The work reported here seeks to engineer a wide-bandgap silicon-based thin-film material by using quantum confinement in silicon quantum dots and to utilize this in complete thin-film silicon-based tandem cell, without the constraints of lattice matching, but which nonetheless gives an enhanced efficiency through the increased spectral collection efficiency. Coherent-sized quantum dots, dispersed in a matrix of silicon carbide, nitride, or oxide, were fabricated by precipitation of Si-rich material deposited by reactive sputtering or PECVD. Bandgap opening of Si QDs in nitride is more blue-shifted than that of Si QD in oxide, while clear evidence of quantum confinement in Si quantum dots in carbide was hard to obtain, probably due to many surface and defect states. The PL decay shows that the lifetimes vary from 10 to 70 microseconds for diameter of 3.4 nm dot with increasing detection wavelength.

[1]  Gavin Conibeer,et al.  Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix , 2008 .

[2]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[3]  Paul K. Chu,et al.  Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties , 2006 .

[4]  S. Ossicini,et al.  Understanding Doping In Silicon Nanostructures , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  M. Konagai,et al.  Preparation of Nanocrystalline Silicon in Amorphous Silicon Carbide Matrix , 2006 .

[6]  Gavin Conibeer,et al.  Silicon nanostructures for third generation photovoltaic solar cells , 2006 .

[7]  Martin A. Green,et al.  Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications , 2006 .

[8]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[9]  Chang-Hee Cho,et al.  Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3 , 2006 .

[10]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[11]  Microcrystalline and "micromorph" solar cells and modules: status and potential , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[12]  E. Pink,et al.  ALL-SILICON TANDEM CELLS BASED ON "ARTIFICIAL" SEMICONDUCTOR SYNTHESISED USING SILICON QUANTUM DOTS IN A DIELECTRIC MATRIX , 2005 .

[13]  P. Hannaford,et al.  Time-resolved and time-integrated photoluminescence analysis of state filling and quantum confinement of silicon quantum dots , 2005 .

[14]  Gun Yong Sung,et al.  Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films , 2004 .

[15]  Effect of nitride passivation on the visible photoluminescence from Si-nanocrystals , 2004 .

[16]  A. Sa’ar,et al.  Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy , 2004 .

[17]  M. Green,et al.  Clear quantum-confined luminescence from crystalline silicon/SiO2 single quantum wells , 2004 .

[18]  J. Nelson The physics of solar cells , 2003 .

[19]  J. Grossman,et al.  Surface control of optical properties in silicon nanoclusters , 2002 .

[20]  K. Emery,et al.  Criteria for the design of GaInP/GaAs/Ge triple-junction cells to optimize their performance outdoors , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[21]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[22]  Tae-Soo Kim,et al.  Band gap engineering of amorphous silicon quantum dots for light-emitting diodes , 2001 .

[23]  Minoru Fujii,et al.  Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime , 2000 .

[24]  Shui-Tong Lee,et al.  Large-scale synthesis of ultrafine Si nanoparticles by ball milling , 2000 .

[25]  Enrico Gratton,et al.  Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy , 2000 .

[26]  T. Sulima,et al.  Boron in mesoporous Si — Where have all the carriers gone? , 1999 .

[27]  Marc Sentis,et al.  Size dependent photoluminescence from Si nanoclusters produced by laser ablation , 1998 .

[28]  M. Schwartzkopff,et al.  BREAKDOWN OF THE K-CONSERVATION RULE IN SI NANOCRYSTALS , 1998 .

[29]  D. J. Lockwood,et al.  Fabrication of Nanocrystalline Silicon Superlattices by Controlled Thermal Recrystallization , 1998 .

[30]  S. U. Campisano,et al.  Electrical and optical properties of semi-insulating polycrystalline silicon thin films: the role of microstructure and doping , 1996 .

[31]  S. Kauzlarich,et al.  A low-temperature solution phase route for the synthesis of silicon nanoclusters , 1996 .

[32]  U. Lindefelt,et al.  Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. , 1996, Physical review. B, Condensed matter.

[33]  Y. Kanemitsu Light-emitting silicon materials , 1996 .

[34]  Xide Xie,et al.  Raman shifts in Si nanocrystals , 1996 .

[35]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[36]  Eugene A. Irene,et al.  Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations , 1995 .

[37]  Tsutomu Shimizu-Iwayama,et al.  Visible photoluminescence in Si+‐implanted thermal oxide films on crystalline Si , 1994 .

[38]  Hideki Hashimoto,et al.  Strong blue light emission from an oxygen‐containing Si fine structure , 1993 .

[39]  Louis E. Brus,et al.  A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction , 1993 .

[40]  Yoshihiko Kanemitsu,et al.  Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices , 1991 .

[41]  H. Ogawa,et al.  Quantum size effects on photoluminescence in ultrafine Si particles , 1990 .

[42]  C. Roxlo,et al.  Amorphous semiconductor superlattices , 1983 .

[43]  D. Dimaria,et al.  Contact currents in silicon nitride , 1976 .

[44]  L. Esaki,et al.  The Growth of a GaAs–GaAlAs Superlattice , 1973 .

[45]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .