Silicon Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells
暂无分享,去创建一个
M. Green | L. Dao | Shujuan Huang | G. Conibeer | X. Hao | Y. Cho | D. Song | Sangwook Park | E. Cho | G. Scardera | Yidan Huang
[1] Gavin Conibeer,et al. Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix , 2008 .
[2] Arvind Shah,et al. Efficiency limits for single-junction and tandem solar cells , 2006 .
[3] Paul K. Chu,et al. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties , 2006 .
[4] S. Ossicini,et al. Understanding Doping In Silicon Nanostructures , 2006, IEEE Journal of Selected Topics in Quantum Electronics.
[5] M. Konagai,et al. Preparation of Nanocrystalline Silicon in Amorphous Silicon Carbide Matrix , 2006 .
[6] Gavin Conibeer,et al. Silicon nanostructures for third generation photovoltaic solar cells , 2006 .
[7] Martin A. Green,et al. Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications , 2006 .
[8] A. Maldonado,et al. Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .
[9] Chang-Hee Cho,et al. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3 , 2006 .
[10] M. Green. Third generation photovoltaics : advanced solar energy conversion , 2006 .
[11] Microcrystalline and "micromorph" solar cells and modules: status and potential , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..
[12] E. Pink,et al. ALL-SILICON TANDEM CELLS BASED ON "ARTIFICIAL" SEMICONDUCTOR SYNTHESISED USING SILICON QUANTUM DOTS IN A DIELECTRIC MATRIX , 2005 .
[13] P. Hannaford,et al. Time-resolved and time-integrated photoluminescence analysis of state filling and quantum confinement of silicon quantum dots , 2005 .
[14] Gun Yong Sung,et al. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films , 2004 .
[15] Effect of nitride passivation on the visible photoluminescence from Si-nanocrystals , 2004 .
[16] A. Sa’ar,et al. Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy , 2004 .
[17] M. Green,et al. Clear quantum-confined luminescence from crystalline silicon/SiO2 single quantum wells , 2004 .
[18] J. Nelson. The physics of solar cells , 2003 .
[19] J. Grossman,et al. Surface control of optical properties in silicon nanoclusters , 2002 .
[20] K. Emery,et al. Criteria for the design of GaInP/GaAs/Ge triple-junction cells to optimize their performance outdoors , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..
[21] J. Heitmann,et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .
[22] Tae-Soo Kim,et al. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes , 2001 .
[23] Minoru Fujii,et al. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime , 2000 .
[24] Shui-Tong Lee,et al. Large-scale synthesis of ultrafine Si nanoparticles by ball milling , 2000 .
[25] Enrico Gratton,et al. Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy , 2000 .
[26] T. Sulima,et al. Boron in mesoporous Si — Where have all the carriers gone? , 1999 .
[27] Marc Sentis,et al. Size dependent photoluminescence from Si nanoclusters produced by laser ablation , 1998 .
[28] M. Schwartzkopff,et al. BREAKDOWN OF THE K-CONSERVATION RULE IN SI NANOCRYSTALS , 1998 .
[29] D. J. Lockwood,et al. Fabrication of Nanocrystalline Silicon Superlattices by Controlled Thermal Recrystallization , 1998 .
[30] S. U. Campisano,et al. Electrical and optical properties of semi-insulating polycrystalline silicon thin films: the role of microstructure and doping , 1996 .
[31] S. Kauzlarich,et al. A low-temperature solution phase route for the synthesis of silicon nanoclusters , 1996 .
[32] U. Lindefelt,et al. Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. , 1996, Physical review. B, Condensed matter.
[33] Y. Kanemitsu. Light-emitting silicon materials , 1996 .
[34] Xide Xie,et al. Raman shifts in Si nanocrystals , 1996 .
[35] D. J. Lockwood,et al. Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.
[36] Eugene A. Irene,et al. Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations , 1995 .
[37] Tsutomu Shimizu-Iwayama,et al. Visible photoluminescence in Si+‐implanted thermal oxide films on crystalline Si , 1994 .
[38] Hideki Hashimoto,et al. Strong blue light emission from an oxygen‐containing Si fine structure , 1993 .
[39] Louis E. Brus,et al. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction , 1993 .
[40] Yoshihiko Kanemitsu,et al. Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices , 1991 .
[41] H. Ogawa,et al. Quantum size effects on photoluminescence in ultrafine Si particles , 1990 .
[42] C. Roxlo,et al. Amorphous semiconductor superlattices , 1983 .
[43] D. Dimaria,et al. Contact currents in silicon nitride , 1976 .
[44] L. Esaki,et al. The Growth of a GaAs–GaAlAs Superlattice , 1973 .
[45] W. Shockley,et al. Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .