Nash embedding: a road map to realizing quantum hardware

The non-Euclidean nature of the mathematical model of quantum circuits leaves open the question of their practical implementation in hardware platforms which necessarily reside in the Euclidean space $\mathbb{R}^3$. On the other hand, reversible circuits are elements of Euclidean spaces, making their physical realization in hardware platforms possible and practical. Here, the quantum circuit model for quantum computing is mapped into that of reversible computing in a mathematically robust fashion using Nash embedding so that every quantum computation can be realized as an equivalent reversible one.

[1]  Roman S. Ingarden,et al.  Quantum information theory , 1976 .

[2]  Bruno Lévy,et al.  Computing a high-dimensional euclidean embedding from an arbitrary smooth riemannian metric , 2018, ACM Trans. Graph..

[3]  Jia-Xing Hong,et al.  Isometric Embedding of Riemannian Manifolds in Euclidean Spaces , 2006 .

[4]  U. Diego Towards an Algorithmic Realization of Nash ’ s Embedding Theorem , 2011 .

[5]  Tao Lin,et al.  Three-Dimensional Graph Drawing , 1994, Graph Drawing.

[6]  Marina Meila,et al.  Nearly Isometric Embedding by Relaxation , 2016, NIPS.

[7]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[8]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[9]  Hassler Whitney,et al.  The collected papers of Hassler Whitney , edited by James Eells and Domingo Toledo. Two volumes. Pp 598, 554. DM378. 1992. ISBN 3-7643-3560-2 (Birkhaüser) , 1994 .

[10]  Hui Huang,et al.  Construction and fabrication of reversible shape transforms , 2018, ACM Trans. Graph..

[11]  C. Clarke,et al.  On the global isometric embedding of pseudo-Riemannian manifolds , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Matthias Günther,et al.  Isometric Embeddings of Riemannian Manifolds , 2010 .

[13]  Robert Everist Greene,et al.  Isometric embeddings of Riemannian and pseudo-Riemannian manifolds , 1970 .

[14]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[15]  D. James,et al.  Qubit quantum state tomography , 2004 .

[16]  Matteo G. A. Paris,et al.  Bayesian estimation in homodyne interferometry , 2009, 0901.2585.

[17]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[18]  Arnold L. Rosenberg,et al.  Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .

[19]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[20]  R. Feynman Simulating physics with computers , 1999 .

[21]  John Preskill Quantum computing and the entanglement frontier - Rapporteur talk at the 25th Solvay Conference , 2012 .