Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space

SUMMARY This paper presents a new derivative-free search method for finding models of acceptable data fit in a multidimensional parameter space. It falls into the same class of method as simulated annealing and genetic algorithms, which are commonly used for global optimization problems. The objective here is to find an ensemble of models that preferentially sample the good data-fitting regions of parameter space, rather than seeking a single optimal model. (A related paper deals with the quantitative appraisal of the ensemble.) The new search algorithm makes use of the geometrical constructs known as Voronoi cells to derive the search in parameter space. These are nearest neighbour regions defined under a suitable distance norm. The algorithm is conceptually simple, requires just two ‘tuning parameters’, and makes use of only the rank of a data fit criterion rather than the numerical value. In this way all diYculties associated with the scaling of a data misfit function are avoided, and any combination of data fit criteria can be used. It is also shown how Voronoi cells can be used to enhance any existing direct search algorithm, by intermittently replacing the forward modelling calculations with nearest neighbour calculations. The new direct search algorithm is illustrated with an application to a synthetic problem involving the inversion of receiver functions for crustal seismic structure. This is known to be a non-linear problem, where linearized inversion techniques suVer from a strong dependence on the starting solution. It is shown that the new algorithm produces a sophisticated type of ‘self-adaptive’ search behaviour, which to our knowledge has not been demonstrated in any previous technique of this kind.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[2]  W. Thomson,et al.  Transmission of Elastic Waves through a Stratified Solid Medium , 1950 .

[3]  N. A. Haskell The Dispersion of Surface Waves on Multilayered Media , 1953 .

[4]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[5]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[6]  V. I. Keilis-Borok,et al.  Inverse Problems of Seismology (Structural Review) , 1967 .

[7]  Frank Press,et al.  Earth models obtained by Monte Carlo inversion. , 1968 .

[8]  R. Wiggins,et al.  Monte Carlo inversion of body‐wave observations , 1969 .

[9]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[10]  R. Anderssen The character of non-uniqueness in the conductivity modelling problem for the earth , 1970 .

[11]  Stuart Crampin,et al.  The Dispersion of Surface Waves in Multilayered Anisotropic Media , 1970 .

[12]  Robert S. Anderssen,et al.  A simple statistical estimation procedure for Monte Carlo Inversion in geophysics , 1971 .

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  R. Parker Understanding Inverse Theory , 1977 .

[15]  B. Kennett Some aspects of non-linearity in inversion , 1978 .

[16]  Guust Nolet,et al.  Resolution Analysis for Discrete Systems , 1978 .

[17]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[21]  Daniel H. Rothman,et al.  Nonlinear inversion, statistical mechanics, and residual statics estimation , 1985 .

[22]  Daniel H. Rothman,et al.  Automatic estimation of large residual statics corrections , 1986 .

[23]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  A. Duijndam BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART I: PRINCIPLES1 , 1988 .

[26]  A. Duijndam BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART II: UNCERTAINTY ANALYSIS1 , 1988 .

[27]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[28]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[29]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[30]  G. Randall,et al.  On the nonuniqueness of receiver function inversions , 1990 .

[31]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[32]  Mrinal K. Sen,et al.  Nonlinear multiparameter optimization using genetic algorithms; inversion of plane-wave seismograms , 1991 .

[33]  D. Oldenburg,et al.  Magnetotelluric appraisal using simulated annealing , 1991 .

[34]  John C. Davis,et al.  Contouring: A Guide to the Analysis and Display of Spatial Data , 1992 .

[35]  J. Scales,et al.  Global optimization methods for multimodal inverse problems , 1992 .

[36]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[37]  M. Sambridge,et al.  Genetic algorithms in seismic waveform inversion , 1992 .

[38]  Lane R. Johnson,et al.  Ensemble inference in geophysical inverse problems , 1993 .

[39]  R. Parker Geophysical Inverse Theory , 1994 .

[40]  Malcolm Sambridge,et al.  Genetic algorithms: a powerful tool for large-scale nonlinear optimization problems , 1994 .

[41]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[42]  R. Snieder,et al.  Identifying sets of acceptable solutions to non-linear, geophysical inverse problems which have complicated misfit functions , 1995 .

[43]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[44]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[45]  Malcolm Sambridge,et al.  Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure , 1996 .

[46]  M. Sambridge Exploring multidimensional landscapes without a map , 1998 .

[47]  Roel Snieder The role of nonlinearity in inverse problems , 1998 .

[48]  J. Scales,et al.  Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis , 1998 .

[49]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble , 1999 .