Knowledge Discovery in Cryptocurrency Transactions: A Survey

Cryptocurrencies gain trust in users by publicly disclosing the full creation and transaction history. In return, the transaction history faithfully records the whole spectrum of cryptocurrency user behaviors. This article analyzes and summarizes the existing research on knowledge discovery in the cryptocurrency transactions using data mining techniques. Specifically, we classify the existing research into three aspects, i.e., transaction tracings and blockchain address linking, the analyses of collective user behaviors, and the study of individual user behaviors. For each aspect, we present the problems, summarize the methodologies, and discuss major findings in the literature. Furthermore, an enumeration of transaction data parsing and visualization tools and services is also provided. Finally, we outline several future directions in this research area, such as the current rapid development of Decentralized Finance (De-Fi) and digital fiat money.

[1]  Paul A. S. Ward,et al.  Pooled Mining is Driving Blockchains Toward Centralized Systems , 2019, 2019 38th International Symposium on Reliable Distributed Systems Workshops (SRDSW).

[2]  Dacheng Tao,et al.  Bitcoin Mixing Detection Using Deep Autoencoder , 2018, 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC).

[3]  Alex Biryukov,et al.  Privacy and Linkability of Mining in Zcash , 2019, 2019 IEEE Conference on Communications and Network Security (CNS).

[4]  Haroldo V. Ribeiro,et al.  Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market , 2019, Scientific Reports.

[5]  Arvind Narayanan,et al.  BlockSci: Design and applications of a blockchain analysis platform , 2017, USENIX Security Symposium.

[6]  Stefano Bistarelli,et al.  A Suite of Tools for the Forensic Analysis of Bitcoin Transactions: Preliminary Report , 2018, Euro-Par Workshops.

[7]  Meni Rosenfeld,et al.  Analysis of Bitcoin Pooled Mining Reward Systems , 2011, ArXiv.

[8]  Yi Zhou,et al.  Erays: Reverse Engineering Ethereum's Opaque Smart Contracts , 2018, USENIX Security Symposium.

[9]  Jie Chen,et al.  Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics , 2019, ArXiv.

[10]  Vitalik Buterin A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM , 2015 .

[11]  Roberto Tamassia,et al.  Bitconeview: visualization of flows in the bitcoin transaction graph , 2015, 2015 IEEE Symposium on Visualization for Cyber Security (VizSec).

[12]  Alex Biryukov,et al.  Deanonymization and Linkability of Cryptocurrency Transactions Based on Network Analysis , 2019, 2019 IEEE European Symposium on Security and Privacy (EuroS&P).

[13]  Laura Ricci,et al.  Data-driven analysis of Bitcoin properties: exploiting the users graph , 2018, International Journal of Data Science and Analytics.

[14]  Rui Zhang,et al.  Security and Privacy on Blockchain , 2019, ACM Comput. Surv..

[15]  Christos Faloutsos,et al.  Edge Weight Prediction in Weighted Signed Networks , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[16]  Ricardo A. S. Fernandes,et al.  Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques , 2019, Appl. Soft Comput..

[17]  Rainer Böhme,et al.  Anonymous Alone? Measuring Bitcoin’s Second-Generation Anonymization Techniques , 2017, 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).

[18]  Tyler Moore,et al.  Analyzing the Bitcoin Ponzi Scheme Ecosystem , 2018, Financial Cryptography Workshops.

[19]  Murat Kantarcioglu,et al.  Bitcoin Risk Modeling With Blockchain Graphs , 2018, Economics Letters.

[20]  Randy H. Katz,et al.  Core Concepts, Challenges, and Future Directions in Blockchain , 2020, ACM Comput. Surv..

[21]  btctrackr : Finding and Displaying Clusters in Bitcoin , 2014 .

[22]  Mariusz Nowostawski,et al.  Evaluating Methods for the Identification of Off-Chain Transactions in the Lightning Network , 2019, Applied Sciences.

[23]  Gang Chen,et al.  Untangling Blockchain: A Data Processing View of Blockchain Systems , 2017, IEEE Transactions on Knowledge and Data Engineering.

[24]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[25]  Bernhard Haslhofer,et al.  A Deep Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining Shares , 2019, ArXiv.

[26]  James Won-Ki Hong,et al.  Toward Detecting Illegal Transactions on Bitcoin Using Machine-Learning Methods , 2019, BlockSys.

[27]  Radu State,et al.  Automated Labeling of Unknown Contracts in Ethereum , 2017, 2017 26th International Conference on Computer Communication and Networks (ICCCN).

[28]  Peter Vangorp,et al.  An empirical analysis of source code metrics and smart contract resource consumption , 2020, J. Softw. Evol. Process..

[29]  Ahmed E. Hassan,et al.  An exploratory study of smart contracts in the Ethereum blockchain platform , 2020, Empirical Software Engineering.

[30]  Xiaojiang Du,et al.  Identifying the vulnerabilities of bitcoin anonymous mechanism based on address clustering , 2020, Science China Information Sciences.

[31]  Dima Shepelyansky,et al.  Google matrix of Bitcoin network , 2017, The European Physical Journal B.

[32]  Hugo Levard,et al.  Quantitative Description of Internal Activity on the Ethereum Public Blockchain , 2018, 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS).

[33]  Mehmet Hadi Gunes,et al.  Empirical Analysis of Crypto Currencies , 2016, CompleNet.

[34]  Jeffrey Quesnelle,et al.  On the linkability of Zcash transactions , 2017, ArXiv.

[35]  Ben Holtz,et al.  Evolutionary Structural Analysis of the Bitcoin Network , 2013 .

[36]  Yaniv Altshuler,et al.  Detecting Bot Activity in the Ethereum Blockchain Network , 2018, ArXiv.

[37]  Pasquale De Meo,et al.  Trust Prediction via Matrix Factorisation , 2019, ACM Trans. Internet Techn..

[38]  Sarah Meiklejohn,et al.  Privacy-Enhancing Overlays in Bitcoin , 2015, Financial Cryptography Workshops.

[39]  Siew Ann Cheong,et al.  Optimal Fee Structure for Efficient Lightning Networks , 2018, 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS).

[40]  Mathis Steichen,et al.  The Art of The Scam: Demystifying Honeypots in Ethereum Smart Contracts , 2019, USENIX Security Symposium.

[41]  Syed Naqvi,et al.  Challenges of Cryptocurrencies Forensics: A Case Study of Investigating, Evidencing and Prosecuting Organised Cybercriminals , 2018, ARES.

[42]  Proceedings of the 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers , 2017, SERIAL@Middleware.

[43]  Marcell Tamás Kurbucz,et al.  Predicting the price of Bitcoin by the most frequent edges of its transaction network , 2019, Economics Letters.

[44]  Anouk van Schetsen Impact of graph-based features on Bitcoin prices , 2019 .

[45]  Matjaz Perc,et al.  Information cascades in complex networks , 2017, J. Complex Networks.

[46]  Neil Gandal,et al.  Price Manipulation in the Bitcoin Ecosystem , 2017 .

[47]  Gabriele D'Angelo,et al.  On the Ethereum blockchain structure: A complex networks theory perspective , 2019, Concurr. Comput. Pract. Exp..

[48]  Murat Kantarcioglu,et al.  Forecasting Bitcoin Price with Graph Chainlets , 2018, PAKDD.

[49]  Björn Scheuermann,et al.  Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies , 2016, IEEE Communications Surveys & Tutorials.

[50]  Isaac Madan Automated Bitcoin Trading via Machine Learning Algorithms , 2014 .

[51]  István Csabai,et al.  Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network , 2013, PloS one.

[52]  Hyunsoo Kwon,et al.  A Practical De-mixing Algorithm for Bitcoin Mixing Services , 2018, BCC '18.

[53]  Frédérique E. Oggier,et al.  Entropic Centrality for non-atomic Flow Networks , 2018, 2018 International Symposium on Information Theory and Its Applications (ISITA).

[54]  Jeffrey S. Rosenschein,et al.  Bitcoin Mining Pools: A Cooperative Game Theoretic Analysis , 2015, AAMAS.

[55]  Frédérique E. Oggier,et al.  BiVA: Bitcoin Network Visualization & Analysis , 2018, 2018 IEEE International Conference on Data Mining Workshops (ICDMW).

[56]  Stefano Martinazzi,et al.  The evolving topology of the Lightning Network: Centralization, efficiency, robustness, synchronization, and anonymity , 2020, PloS one.

[57]  Jason Hirshman,et al.  Unsupervised Approaches to Detecting Anomalous Behavior in the Bitcoin Transaction Network , 2013 .

[58]  Rémy Cazabet,et al.  Tracking Bitcoin Users Activity Using Community Detection on a Network of Weak Signals , 2017, COMPLEX NETWORKS.

[59]  Radu State,et al.  Finding Suspicious Activities in Financial Transactions and Distributed Ledgers , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[61]  Dirk Helbing,et al.  Saving Human Lives: What Complexity Science and Information Systems can Contribute , 2014, Journal of statistical physics.

[62]  Ladislav Kristoufek,et al.  BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era , 2013, Scientific Reports.

[63]  Yong Liu,et al.  Exploring Miner Evolution in Bitcoin Network , 2015, PAM.

[64]  Afshin Babveyh,et al.  Predicting User Performance and Bitcoin Price Using Block Chain Transaction Network , 2018, ArXiv.

[65]  Zièd Choukair,et al.  Anomaly Detection Model Over Blockchain Electronic Transactions , 2019, 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC).

[66]  Zheshi Chen,et al.  Bitcoin price prediction using machine learning: An approach to sample dimension engineering , 2020, J. Comput. Appl. Math..

[67]  Kamil Zbikowski,et al.  Detecting Fraudulent Accounts on Blockchain: A Supervised Approach , 2019, WISE.

[68]  Xiaodong Lin,et al.  Understanding Ethereum via Graph Analysis , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[69]  Research and Technologies for Society and Industry , 2018, International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow.

[70]  Christian Decker,et al.  Lightning network: a second path towards centralisation of the Bitcoin economy , 2020, New Journal of Physics.

[71]  Kensuke Fukuda,et al.  Characterizing and Detecting Money Laundering Activities on the Bitcoin Network , 2019, ArXiv.

[72]  P. Takis Mathiopoulos,et al.  Identification of High Yielding Investment Programs in Bitcoin via Transactions Pattern Analysis , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[73]  Mohammad Hammoudeh,et al.  Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach , 2020, Neural Computing and Applications.

[74]  Leo P. Kadanoff,et al.  The Unreasonable Effectiveness of , 2000 .

[75]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[76]  Jun Wang,et al.  Multiscale fluctuations and complexity synchronization of Bitcoin in China and US markets , 2018, Physica A: Statistical Mechanics and its Applications.

[77]  Andrew Urquhart The Inefficiency of Bitcoin , 2016 .

[78]  Francesco Zola,et al.  Cascading Machine Learning to Attack Bitcoin Anonymity , 2019, 2019 IEEE International Conference on Blockchain (Blockchain).

[79]  Radosław Michalski,et al.  Revealing the Character of Nodes in a Blockchain With Supervised Learning , 2020, IEEE Access.

[80]  A. Pentland,et al.  Network Dynamics of a Financial Ecosystem , 2020, Scientific Reports.

[81]  Joaquin Garcia-Alfaro,et al.  Data Privacy Management, Cryptocurrencies and Blockchain Technology , 2017, Lecture Notes in Computer Science.

[82]  Emine Yilmaz,et al.  An Analysis of the Change in Discussions on Social Media with Bitcoin Price , 2019, SIGIR.

[83]  Sarah Meiklejohn,et al.  Tracing Transactions Across Cryptocurrency Ledgers , 2018, USENIX Security Symposium.

[84]  Christoph Fretter,et al.  The Unreasonable Effectiveness of Address Clustering , 2016, 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld).

[85]  Jaewook Lee,et al.  An Empirical Study on Modeling and Prediction of Bitcoin Prices With Bayesian Neural Networks Based on Blockchain Information , 2018, IEEE Access.

[86]  Giuseppe Antonio Pierro,et al.  The Influence Factors on Ethereum Transaction Fees , 2019, 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB).

[87]  Massimo Bartoletti,et al.  Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact , 2017, Future Gener. Comput. Syst..

[88]  Angela Irwin,et al.  The use of crypto-currencies in funding violent jihad , 2016 .

[89]  Fergal Reid,et al.  An Analysis of Anonymity in the Bitcoin System , 2011, PASSAT 2011.

[90]  Mauro Conti,et al.  A Survey on Security and Privacy Issues of Bitcoin , 2017, IEEE Communications Surveys & Tutorials.

[91]  William J. Knottenbelt,et al.  Uncle Traps: Harvesting Rewards in a Queue-based Ethereum Mining Pool , 2019, IACR Cryptol. ePrint Arch..

[92]  Xiapu Luo,et al.  DataEther: Data Exploration Framework For Ethereum , 2019, 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).

[93]  Tyler Moore,et al.  There's No Free Lunch, Even Using Bitcoin: Tracking the Popularity and Profits of Virtual Currency Scams , 2015, Financial Cryptography.

[94]  Prateek Saxena,et al.  A Traceability Analysis of Monero's Blockchain , 2017, ESORICS.

[95]  Yang Li,et al.  EtherQL: A Query Layer for Blockchain System , 2017, DASFAA.

[96]  Lipo Wang,et al.  Bitcoin price prediction using ensembles of neural networks , 2017, 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

[97]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[98]  Hiroki Kuzuno,et al.  Blockchain explorer: An analytical process and investigation environment for bitcoin , 2017, 2017 APWG Symposium on Electronic Crime Research (eCrime).

[99]  Jonas David Nick,et al.  Data-Driven De-Anonymization in Bitcoin , 2015 .

[100]  Alan Mislove,et al.  Analyzing Ethereum's Contract Topology , 2018, Internet Measurement Conference.

[101]  Aziz Mohaisen,et al.  Toward Characterizing Blockchain-Based Cryptocurrencies for Highly Accurate Predictions , 2020, IEEE Systems Journal.

[102]  Zibin Zheng,et al.  Who Are the Phishers? Phishing Scam Detection on Ethereum via Network Embedding , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[103]  C. Pérez-Solà,et al.  Another coin bites the dust: an analysis of dust in UTXO-based cryptocurrencies , 2019, Royal Society Open Science.

[104]  Maxim Panov,et al.  Automatic Bitcoin Address Clustering , 2017, 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA).

[105]  P. Takis Mathiopoulos,et al.  Multi-Class Bitcoin-Enabled Service Identification Based on Transaction History Summarization , 2018, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[106]  Benjamin Fabian,et al.  Exploring the Bitcoin Network , 2018, WEBIST.

[107]  Nagiza F. Samatova,et al.  Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph , 2017, Financial Cryptography Workshops.

[108]  Zibin Zheng,et al.  Detecting Mixing Services via Mining Bitcoin Transaction Network With Hybrid Motifs , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[109]  Christian Rossow,et al.  teEther: Gnawing at Ethereum to Automatically Exploit Smart Contracts , 2018, USENIX Security Symposium.

[110]  Andrea Pinna,et al.  A Massive Analysis of Ethereum Smart Contracts Empirical Study and Code Metrics , 2019, IEEE Access.

[111]  Frank Schweitzer,et al.  Social signals and algorithmic trading of Bitcoin , 2015, Royal Society Open Science.

[112]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[113]  Stefano Zanero,et al.  BitIodine: Extracting Intelligence from the Bitcoin Network , 2014, Financial Cryptography.

[114]  Radu State,et al.  Mint Centrality: A Centrality Measure for the Bitcoin Transaction Graph , 2019, 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).

[115]  Zibin Zheng,et al.  Market Manipulation of Bitcoin: Evidence from Mining the Mt. Gox Transaction Network , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[116]  Albert Levi,et al.  A Survey on Anonymity and Privacy in Bitcoin-Like Digital Cash Systems , 2018, IEEE Communications Surveys & Tutorials.

[117]  Tomoaki Ohtsuki,et al.  A Novel Methodology for HYIP Operators’ Bitcoin Addresses Identification , 2019, IEEE Access.

[118]  Ying Wang,et al.  SuPoolVisor: a visual analytics system for mining pool surveillance , 2020, Frontiers of Information Technology & Electronic Engineering.

[119]  Hao Liao,et al.  Ranking in evolving complex networks , 2017, ArXiv.

[120]  Mauro Conti,et al.  On the Economic Significance of Ransomware Campaigns: A Bitcoin Transactions Perspective , 2018, Comput. Secur..

[121]  Alex Greaves,et al.  Using the Bitcoin Transaction Graph to Predict the Price of Bitcoin , 2015 .

[122]  Steven Lee,et al.  Anomaly Detection in the Bitcoin System - A Network Perspective , 2016, ArXiv.

[123]  Solarin Sakiru Adebola,et al.  Gold prices and the cryptocurrencies: Evidence of convergence and cointegration , 2019, Physica A: Statistical Mechanics and its Applications.

[124]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[125]  Vukosi N. Marivate,et al.  A Multifaceted Approach to Bitcoin Fraud Detection: Global and Local Outliers , 2016, 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).

[126]  Benjamin Fabian,et al.  Analyzing the Bitcoin Network: The First Four Years , 2016, Future Internet.

[127]  Ghassan O. Karame,et al.  Evaluating User Privacy in Bitcoin , 2013, Financial Cryptography.

[128]  Sarah Meiklejohn,et al.  An Empirical Analysis of Anonymity in Zcash , 2018, USENIX Security Symposium.

[129]  Marco Conoscenti,et al.  Hubs, Rebalancing and Service Providers in the Lightning Network , 2019, IEEE Access.

[130]  Yanfeng Wang,et al.  K-Means Algorithm for Recognizing Fraud Users on a Bitcoin Exchange Platform , 2018 .

[131]  Chen Feng,et al.  A Measurement Study of Bitcoin Lightning Network , 2019, 2019 IEEE International Conference on Blockchain (Blockchain).

[132]  Jeremy Rubin,et al.  BTCSpark : Scalable Analysis of the Bitcoin Blockchain using Spark , 2015 .

[133]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[134]  P. Takis Mathiopoulos,et al.  Time Series Analysis for Bitcoin Transactions: The Case of Pirate@40's HYIP Scheme , 2018, 2018 IEEE International Conference on Data Mining Workshops (ICDMW).

[135]  Stephanos Papadamou,et al.  Investigating volatility transmission and hedging properties between Bitcoin and Ethereum , 2019, Research in International Business and Finance.

[136]  Ethan Heilman,et al.  An Empirical Analysis of Traceability in the Monero Blockchain , 2017, Proc. Priv. Enhancing Technol..

[137]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[138]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[139]  Yunjie Ge,et al.  Data Mining-Based Ethereum Fraud Detection , 2019, 2019 IEEE International Conference on Blockchain (Blockchain).

[140]  Friedhelm Victor,et al.  Measuring Ethereum-Based ERC20 Token Networks , 2019, Financial Cryptography.

[141]  Yuriy Yanovich,et al.  Shared Send Untangling in Bitcoin , 2016 .

[142]  Chen Zhao,et al.  A Graph-Based Investigation of Bitcoin Transactions , 2015, IFIP Int. Conf. Digital Forensics.

[143]  N. Kyriazis,et al.  A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets , 2019, Journal of Risk and Financial Management.

[144]  A. Mamun,et al.  Geopolitical risk, uncertainty and Bitcoin investment , 2020 .

[145]  Adam Mackenzie,et al.  MRL-0004 Improving Obfuscation in the CryptoNote Protocol , 2015 .

[146]  A. H. Dyhrberg Bitcoin, gold and the dollar – A GARCH volatility analysis , 2016 .

[147]  Suprio Ray,et al.  De‐anonymizing Ethereum blockchain smart contracts through code attribution , 2020, Int. J. Netw. Manag..

[148]  A. F. Bariviera The Inefficiency of Bitcoin Revisited: A Dynamic Approach , 2017, 1709.08090.

[149]  Julinda Stefa,et al.  Consensus Robustness and Transaction De-Anonymization in the Ripple Currency Exchange System , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[150]  Andrea Baronchelli,et al.  Evolutionary dynamics of the cryptocurrency market , 2017, Royal Society Open Science.

[151]  Hyoungshick Kim,et al.  On the robustness of Lightning Network in Bitcoin , 2020, Pervasive Mob. Comput..

[152]  Wei Zhang,et al.  The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average , 2018, Physica A: Statistical Mechanics and its Applications.

[153]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[154]  Zongyang Zhang,et al.  A Refined Analysis of Zcash Anonymity , 2020, IEEE Access.

[155]  Man Ho Au,et al.  New Empirical Traceability Analysis of CryptoNote-Style Blockchains , 2019, Financial Cryptography.

[156]  Ravikiran Vatrapu,et al.  Breaking Bad: De-Anonymising Entity Types on the Bitcoin Blockchain Using Supervised Machine Learning , 2018, HICSS.

[157]  Raghava Rao Mukkamala,et al.  Regulating Cryptocurrencies: A Supervised Machine Learning Approach to De-Anonymizing the Bitcoin Blockchain , 2019, J. Manag. Inf. Syst..

[158]  George Azzopardi,et al.  Detection of illicit accounts over the Ethereum blockchain , 2020, Expert Syst. Appl..

[159]  Silivanxay Phetsouvanh,et al.  Analysis of multi‐input multi‐output transactions in the Bitcoin network , 2019, Concurr. Comput. Pract. Exp..

[160]  Adam Doupé,et al.  Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin , 2016, 2016 APWG Symposium on Electronic Crime Research (eCrime).

[161]  Yufang Wang,et al.  Using networks and partial differential equations to forecast bitcoin price movement. , 2020, Chaos.

[162]  Murat Kantarcioglu,et al.  On the role of local blockchain network features in cryptocurrency price formation , 2020, Canadian Journal of Statistics.

[163]  Sadia Afroz,et al.  Backpage and Bitcoin: Uncovering Human Traffickers , 2017, KDD.

[164]  Xiaolin Chang,et al.  Modeling of Bitcoin's Blockchain Delivery Network , 2020, IEEE Transactions on Network Science and Engineering.

[165]  Bernhard Haslhofer,et al.  Ransomware Payments in the Bitcoin Ecosystem , 2018, J. Cybersecur..

[166]  Bernhard Haslhofer,et al.  Spams meet Cryptocurrencies: Sextortion in the Bitcoin Ecosystem , 2019, AFT.

[167]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[168]  Sehyun Park,et al.  Nodes in the Bitcoin Network: Comparative Measurement Study and Survey , 2019, IEEE Access.

[169]  Laura Wynter,et al.  Characterizing Entities in the Bitcoin Blockchain , 2018, 2018 IEEE International Conference on Data Mining Workshops (ICDMW).

[170]  Jonathan Gillett Predicting Bitcoin: a robust model for predicting Bitcoin price directions based on network influencers , 2016 .

[171]  Danai Koutra,et al.  RolX: structural role extraction & mining in large graphs , 2012, KDD.

[172]  Dimitrios Papadopoulos,et al.  BitExTract: Interactive Visualization for Extracting Bitcoin Exchange Intelligence , 2019, IEEE Transactions on Visualization and Computer Graphics.

[173]  Yaniv Altshuler,et al.  Network Analysis of ERC20 Tokens Trading on Ethereum Blockchain , 2018 .

[174]  Nicolas Christin,et al.  Traveling the silk road: a measurement analysis of a large anonymous online marketplace , 2012, WWW.

[175]  Adi Shamir,et al.  How Did Dread Pirate Roberts Acquire and Protect his Bitcoin Wealth? , 2014, Financial Cryptography Workshops.

[176]  Hyeonseung Im,et al.  A Comparative Study of Bitcoin Price Prediction Using Deep Learning , 2019, Mathematics.

[177]  Aviral Kumar Tiwari,et al.  Informational efficiency of Bitcoin—An extension , 2018 .

[178]  Daniel Dajun Zeng,et al.  Evolutionary dynamics of cryptocurrency transaction networks: An empirical study , 2018, PloS one.

[179]  Steven Johnson,et al.  Emergence: The Connected Lives of Ants, Brains, Cities, and Software , 2001 .

[180]  Stefano Secci,et al.  Bitcoin Pool-Hopping Detection , 2018, 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI).

[181]  Michael S. Kester,et al.  Bitcoin Transaction Graph Analysis , 2015, ArXiv.

[182]  Lennart Ante Bitcoin Transactions, Information Asymmetry and Trading Volume , 2020, Quantitative Finance and Economics.

[183]  Martin Steinebach,et al.  Monitoring Product Sales in Darknet Shops , 2018, ARES.

[184]  Zibin Zheng,et al.  Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum , 2019, IEEE Access.

[185]  Sudeep Tanwar,et al.  Stochastic Neural Networks for Cryptocurrency Price Prediction , 2020, IEEE Access.

[186]  S A R A H M E I K L E J O H N,et al.  A Fistful of Bitcoins Characterizing Payments Among Men with No Names , 2013 .

[187]  Adam S. Hayes,et al.  The Evolution of the Bitcoin Economy: Extracting and Analyzing the Network of Payment Relationships , 2016 .

[188]  Daniel Zeng,et al.  Targeted Addresses Identification for Bitcoin with Network Representation Learning , 2019, 2019 IEEE International Conference on Intelligence and Security Informatics (ISI).

[189]  Julio Hernandez-Castro,et al.  An Analysis of Bitcoin Laundry Services , 2017, NordSec.

[190]  Yang Lu,et al.  Unraveling Blockchain based Crypto-currency System Supporting Oblivious Transactions: a Formalized Approach , 2017 .

[191]  Massimo Bartoletti,et al.  A general framework for blockchain analytics , 2017, SERIAL@Middleware.

[192]  Shih-Wei Liao,et al.  An Evaluation of Bitcoin Address Classification based on Transaction History Summarization , 2019, 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).

[193]  Malte Möser,et al.  An inquiry into money laundering tools in the Bitcoin ecosystem , 2013, 2013 APWG eCrime Researchers Summit.

[194]  Ralucca Gera,et al.  Analyzing Preferential Attachment in Peer-to-Peer BITCOIN Networks , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[195]  Gernot Salzer,et al.  A Survey of Tools for Analyzing Ethereum Smart Contracts , 2019, 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON).

[196]  Massimo Bartoletti,et al.  Data Mining for Detecting Bitcoin Ponzi Schemes , 2018, 2018 Crypto Valley Conference on Blockchain Technology (CVCBT).

[197]  Quantitative analysis of Bitcoin exchange rate and transactional network properties , 2015 .

[198]  Alex Biryukov,et al.  Privacy Aspects and Subliminal Channels in Zcash , 2019, CCS.

[199]  Adi Shamir,et al.  Quantitative Analysis of the Full Bitcoin Transaction Graph , 2013, Financial Cryptography.

[200]  Tyler Moore,et al.  An Examination of the Cryptocurrency Pump and Dump Ecosystem , 2018 .

[201]  Davor Svetinovic,et al.  Improving Bitcoin Ownership Identification Using Transaction Patterns Analysis , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[202]  Kai Wang,et al.  Graph structure and statistical properties of Ethereum transaction relationships , 2019, Inf. Sci..

[203]  Valentin Melnikov,et al.  Fitness preferential attachment as a driving mechanism in bitcoin transaction network , 2019, PloS one.

[204]  Christian Doerr,et al.  Discovering Bitcoin Mixing Using Anomaly Detection , 2017, CIARP.

[205]  Xiapu Luo,et al.  TokenScope: Automatically Detecting Inconsistent Behaviors of Cryptocurrency Tokens in Ethereum , 2019, CCS.

[206]  Primal Wijesekera,et al.  An investigation of MMM Ponzi scheme on Bitcoin , 2019 .

[207]  William J. Buchanan,et al.  Scenario-based creation and digital investigation of ethereum ERC20 tokens , 2020, Digit. Investig..

[208]  Ernestina Menasalvas Ruiz,et al.  Combining complex networks and data mining: why and how , 2016, bioRxiv.

[209]  Edgar R. Weippl,et al.  Merged Mining: Curse or Cure? , 2017, DPM/CBT@ESORICS.

[210]  I. Csabai,et al.  Inferring the interplay between network structure and market effects in Bitcoin , 2014, ArXiv.