Alzheimer's Disease: Models of Computation and Analysis of EEGs

In a recent article the authors presented a comprehensive review of research performed on computational modeling of Alzheimer's disease (AD) and its markers with a focus on computer imaging, classification models, connectionist neural models, and biophysical neural models. The popularity of imaging techniques for detection and diagnosis of possible AD stems from the relative ease with which neurological markers can be converted to visual markers. However, due to the expense of specialized experts and equipment involved in the use of imaging techniques, a subject of significant research interest is detecting markers in EEGs obtained from AD patients. In this article, the authors present a state-of-the-art review of models of computation and analysis of EEGs for diagnosis and detection of AD. This review covers three areas: time-frequency analysis, wavelet analysis, and chaos analysis. The vast number of physiological parameters involved in the poorly understood processes responsible for AD yields a large combination of parameters that can be manipulated and studied. A combination of parameters from different investigation modalities seems to be more effective in increasing the accuracy of detection and diagnosis.

[1]  G. Edelman,et al.  Consciousness and Complexity , 1998 .

[2]  M. Mesulam The cholinergic lesion of Alzheimer's disease: pivotal factor or side show? , 2004, Learning & memory.

[3]  Soo-Yong Kim,et al.  Non-linear dynamical analysis of the EEG in Alzheimer's disease with optimal embedding dimension. , 1998, Electroencephalography and clinical neurophysiology.

[4]  H Sattel,et al.  Parameters of EEG dimensional complexity in Alzheimer's disease. , 1995, Electroencephalography and clinical neurophysiology.

[5]  T Dierks,et al.  Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study , 2000, Clinical Neurophysiology.

[6]  Albano,et al.  Filtered noise can mimic low-dimensional chaotic attractors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  C M Michel,et al.  Single-dose piracetam effects on global complexity measures of human spontaneous multichannel EEG. , 1999, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[8]  V. Protopopescu,et al.  Detecting dynamical change in nonlinear time series , 1999 .

[9]  Kulikov Ma,et al.  [Chaotic component of human high-frequency EEG in the state of quiet wakefulness]. , 2002 .

[10]  J Wackermann,et al.  Global dimensional complexity of the EEG in healthy volunteers. , 1995, Neuropsychobiology.

[11]  Edward Bullmore,et al.  A new technique for fractal analysis applied to human, intracerebrally recorded, ictal electroencephalographic signals , 1992, Neuroscience Letters.

[12]  R. Acharya U,et al.  Nonlinear analysis of EEG signals at different mental states , 2004, Biomedical engineering online.

[13]  Brechtje Jelles,et al.  Non-linear dynamical analysis of multichannel EEG: Clinical applications in dementia and Parkinson's disease , 2005, Brain Topography.

[14]  P. F. Meier,et al.  Dimensional complexity and spectral properties of the human sleep EEG , 2003, Clinical Neurophysiology.

[15]  H Sattel,et al.  Discrimination of Alzheimer's disease and normal aging by EEG data. , 1997, Electroencephalography and clinical neurophysiology.

[16]  Robert B. Lufkin,et al.  Cordance: A New Method for Assessment of Cerebral Perfusion and Metabolism Using Quantitative Electroencephalography , 1994, NeuroImage.

[17]  I V Tetko,et al.  Non-linear cortico-cortical interactions modulated by cholinergic afferences from the rat basal forebrain. , 2000, Bio Systems.

[18]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[19]  P. Rapp,et al.  Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. , 1996, Electroencephalography and clinical neurophysiology.

[20]  D L Braff,et al.  Use of methods from chaos theory to quantify a fundamental dysfunction in the behavioral organization of schizophrenic patients. , 1996, The American journal of psychiatry.

[21]  M Molnár,et al.  Correlation dimension changes of the EEG during the wakefulness-sleep cycle. , 1991, Acta biochimica et biophysica Hungarica.

[22]  J Theiler,et al.  Low Doses of Ethanol Reduce Evidence for Nonlinear Structure in Brain Activity , 1998, The Journal of Neuroscience.

[23]  H. Adeli,et al.  Analysis of EEG records in an epileptic patient using wavelet transform , 2003, Journal of Neuroscience Methods.

[24]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals , 1995 .

[25]  W. Pritchard,et al.  On the validity of estimating EEG correlation dimension from a spatial embedding. , 1996, Psychophysiology.

[26]  M C Bourdel,et al.  [Quantified EEG in the diagnosis of Alzheimer's type dementia]. , 1991, Neurophysiologie clinique = Clinical neurophysiology.

[27]  Cornelis J Stam,et al.  Non-linear EEG measures during sleep: effects of the different sleep stages and cyclic alternating pattern. , 2002, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[28]  C. J. Stam,et al.  Investigation of nonlinear structure in multichannel EEG , 1995 .

[29]  E G Tangalos,et al.  Mild cognitive impairment. When is it a precursor to Alzheimer's disease? , 2000, Geriatrics.

[30]  Hojjat Adeli,et al.  Fuzzy clustering approach for accurate embedding dimension identification in chaotic time series , 2003, Integr. Comput. Aided Eng..

[31]  Stefanie Lis,et al.  The Topography of Non-Linear Cortical Dynamics at Rest, in Mental Calculation and Moving Shape Perception , 2004, Brain Topography.

[32]  A. Meyer-Lindenberg,et al.  The evolution of complexity in human brain development: an EEG study. , 1996, Electroencephalography and clinical neurophysiology.

[33]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  B. Roth,et al.  A mathematical model for electrical stimulation of a monolayer of cardiac cells. , 2004 .

[35]  R Ferri,et al.  Correlation dimension of EEG slow-wave activity during sleep in children and young adults. , 1998, Electroencephalography and clinical neurophysiology.

[36]  J. Röschke,et al.  Estimation of the dimensionality of sleep-EEG data in schizophrenics , 2005, European Archives of Psychiatry and Clinical Neuroscience.

[37]  Donald C. Wunsch,et al.  Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG , 2000, Neurocomputing.

[38]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[39]  A Pääkkönen,et al.  Serial EEG in Alzheimer's disease: 3 year follow-up and clinical outcome. , 1991, Electroencephalography and clinical neurophysiology.

[40]  Martin Tobias Huber,et al.  Effects of noise on different disease states of recurrent affective disorders , 2000, Biological Psychiatry.

[41]  Dietrich Lehmann,et al.  EEG Source Localization and Global Dimensional Complexity in High- and Low- Hypnotizable Subjects: A Pilot Study , 2001, Neuropsychobiology.

[42]  J. Born,et al.  EEG complexity and performance measures of creative thinking. , 1999, Psychophysiology.

[43]  Dietrich Lehmann,et al.  Global, Regional, and Local Measures of Complexity of Multichannel Electroencephalography in Acute, Neuroleptic-Naive, First-Break Schizophrenics , 1998, Biological Psychiatry.

[44]  Julián J. González,et al.  Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages , 1998, Neuroscience Letters.

[45]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[46]  R. Edelman,et al.  Diffusion-Weighted Magnetic Resonance Imaging in Alzheimer’s Disease , 1999, Dementia and Geriatric Cognitive Disorders.

[47]  J. Jeong,et al.  Test for low-dimensional determinism in electroencephalograms. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  Zaven S. Khachaturian,et al.  Synthesis of Critical Topics in Alzheimer’s Disease * , 1996 .

[49]  M Takasaki,et al.  Increased water diffusion in cerebral white matter in Alzheimer's disease. , 1997, Gerontology.

[50]  Martin P Paulus,et al.  Chaos and schizophrenia: does the method fit the madness? , 2003, Biological Psychiatry.

[51]  R. Hu Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) , 2003 .

[52]  Jaeseung Jeong EEG dynamics in patients with Alzheimer's disease , 2004, Clinical Neurophysiology.

[53]  C Derouesné,et al.  Article OriginalApport de l'EEG quantifié au diagnostic de démence de type AlzheimerComputerized-EEG in the diagnosis of Alzheimer type dementia , 1991 .

[54]  J. Gore,et al.  Mutual information analysis of the EEG in patients with Alzheimer's disease , 2001, Clinical Neurophysiology.

[55]  Jürgen Fell,et al.  Surrogate data analysis of sleep electroencephalograms reveals evidence for nonlinearity , 1996, Biological Cybernetics.

[56]  Yuji Wada,et al.  Human Sleep EEG Analysis Using the Correlation Dimension , 2001, Clinical EEG.

[57]  G. Williams Chaos theory tamed , 1997 .

[58]  Tilo Kircher,et al.  Dynamic regulation of EEG power and coherence is lost early and globally in probable DAT , 2001, European Archives of Psychiatry and Clinical Neuroscience.

[59]  N. Birbaumer,et al.  Age increases brain complexity. , 1996, Electroencephalography and clinical neurophysiology.

[60]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[61]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[62]  C. Stam,et al.  Application of a neural complexity measure to multichannel EEG , 2001 .

[63]  L. Cao Practical method for determining the minimum embedding dimension of a scalar time series , 1997 .

[64]  A. Ademoglu,et al.  Analysis of pattern reversal visual evoked potentials (PRVEPs) by spline wavelets , 1997, IEEE Transactions on Biomedical Engineering.

[65]  Yuji Wada,et al.  Effect of Ethanol on Human Sleep EEG Using Correlation Dimension Analysis , 2002, Neuropsychobiology.

[66]  K. Coburn,et al.  EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures. , 1994, Electroencephalography and clinical neurophysiology.

[67]  Stephen J. Elliott,et al.  Efficient estimation of a time-varying dimension parameter and its application to EEG analysis , 2003, IEEE Transactions on Biomedical Engineering.

[68]  T. Gasser,et al.  EEG coherence in Alzheimer disease. , 1994, Electroencephalography and clinical neurophysiology.

[69]  N. Thakor,et al.  The nonlinear dynamical analysis of the EEG in schizophrenia with temporal and spatial embedding dimension. , 2001, Journal of medical engineering & technology.

[70]  R. Coleman,et al.  Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. , 2003, Radiology.

[71]  R. Schiffer,et al.  Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG , 2001, Clinical Neurophysiology.

[72]  J. Price,et al.  Mild cognitive impairment represents early-stage Alzheimer disease. , 2001, Archives of neurology.

[73]  F. Angeleri,et al.  EEG power spectrum differences in early and late onset forms of Alzheimer's disease , 1999, Clinical Neurophysiology.

[74]  F Angeleri,et al.  EEG spectral analysis in vascular and Alzheimer dementia. , 1995, Electroencephalography and clinical neurophysiology.

[75]  Robert D. Terry,et al.  A History of the Morphology of Alzheimer’s Disease , 1996, Alzheimer’s Disease.

[76]  Andrew J Saykin,et al.  Mild cognitive impairment: conceptual issues and structural and functional brain correlates. , 2003, Seminars in clinical neuropsychiatry.

[77]  D Liberati,et al.  EEG coherence in Alzheimer's disease. , 1998, Electroencephalography and clinical neurophysiology.

[78]  L Pezard,et al.  Why bother to spatially embed EEG? Comments on Pritchard et al., Psychophysiology, 33, 362-368, 1996. , 1999, Psychophysiology.

[79]  M. Storandt,et al.  A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years. , 1985, Electroencephalography and clinical neurophysiology.

[80]  W. Pritchard,et al.  On the validity of spatial embedding: a reply to Pezard et al. , 1999, Psychophysiology.

[81]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[82]  Dennis Gabor,et al.  Theory of communication , 1946 .

[83]  B. Gueguen,et al.  Apport de l'EEG quantifié au diagnostic de démence de type Alzheimer , 1991, Neurophysiologie Clinique/Clinical Neurophysiology.

[84]  Hojjat Adeli,et al.  Alzheimer's disease and models of computation: imaging, classification, and neural models. , 2005, Journal of Alzheimer's disease : JAD.

[85]  F. H. Lopes da Silva,et al.  Dynamics of local neuronal networks: control parameters and state bifurcations in epileptogenesis. , 1994, Progress in brain research.

[86]  W M Herrmann,et al.  On the dimensionality of sleep-EEG data. Using chaos mathematics and a systematic variation of the parameters of the Corex program to determine the correlation exponents of sleep EEG segments. , 1995, Neuropsychobiology.

[87]  B. W van Dijk,et al.  Magnetoencephalographic analysis of cortical activity in Alzheimer's disease: a pilot study , 2000, Clinical Neurophysiology.

[88]  K Lehnertz,et al.  Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  C M Michel,et al.  Global dimensional complexity of multi-channel EEG indicates change of human brain functional state after a single dose of a nootropic drug. , 1993, Electroencephalography and clinical neurophysiology.

[90]  J Wackermann,et al.  Global dimensional complexity of multichannel EEG in mild Alzheimer's disease and age-matched cohorts. , 1997, Dementia and geriatric cognitive disorders.

[91]  J. Röschke,et al.  The dimensionality of human's electroencephalogram during sleep , 1991, Biological Cybernetics.

[92]  C. Stam,et al.  Use of non-linear EEG measures to characterize EEG changes during mental activity. , 1996, Electroencephalography and clinical neurophysiology.

[93]  A. Heyman,et al.  Heterogeneity of Alzheimer’s Disease , 1996, Alzheimer’s Disease.

[94]  Hojjat Adeli,et al.  Mesoscopic-Wavelet Freeway Work Zone Flow and Congestion Feature Extraction Model , 2004 .

[95]  Hojjat Adeli,et al.  FUZZY-WAVELET RBFNN MODEL FOR FREEWAY INCIDENT DETECTION , 2000 .

[96]  J Wackermann,et al.  Analysis of complexity of EEG during sleep. , 1996, Acta neurobiologiae experimentalis.

[97]  H. Soininen,et al.  Slowing of electroencephalogram and choline acetyltransferase activity in post mortem frontal cortex in definite Alzheimer's disease , 1992, Neuroscience.

[98]  Xin Meng,et al.  Can We Measure Consciousness with EEG Complexities? , 2003, Int. J. Bifurc. Chaos.

[99]  C. J Stam,et al.  A neural complexity measure applied to MEG data in Alzheimer's disease , 2003, Clinical Neurophysiology.

[100]  F Angeleri,et al.  An EEG power index (eyes open vs. eyes closed) to differentiate Alzheimer's from vascular dementia and healthy ageing. , 1996, Archives of gerontology and geriatrics.

[101]  Cornelis J Stam,et al.  Nonlinear EEG analysis during sleep in premature and full-term newborns , 2003, Clinical Neurophysiology.

[102]  A. Leuchter,et al.  Synaptic dysfunction in Alzheimer's disease: clinical assessment using quantitative EEG , 1996, Behavioural Brain Research.

[103]  M A Kulikov,et al.  [Chaotic component of human high-frequency EEG in the state of quiet wakefulness]. , 2002, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova.

[104]  Olaf Sporns,et al.  Connectivity and complexity: the relationship between neuroanatomy and brain dynamics , 2000, Neural Networks.

[105]  G. Edelman,et al.  Complexity and coherency: integrating information in the brain , 1998, Trends in Cognitive Sciences.

[106]  B. Litt,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Review Prediction of Epileptic Seizures Are Seizures Predictable? Prediction of Epileptic Seizures , 2022 .

[107]  J. Calabrese,et al.  Quantification of occipital EEG changes in Alzheimer's disease utilizing a new metric: The fractal dimension , 1994, Biological Psychiatry.

[108]  J. Montplaisir,et al.  Sleep disturbances and eeg slowing in alzheimer's disease. , 1998, Sleep research online : SRO.

[109]  C M Michel,et al.  Localization of sources of brain alpha/theta/delta activity and the influence of the mode of spontaneous mentation. , 1993, Physiological measurement.

[110]  G Tononi,et al.  A complexity measure for selective matching of signals by the brain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Hojjat Adeli,et al.  Comparison of fuzzy-wavelet radial basis function neural network freeway incident detection model with California algorithm , 2002 .

[112]  H. Cecil Charles,et al.  Magnetic resonance imaging of Alzheimer's disease , 1996, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[113]  E. R. John,et al.  Quantitative EEG correlates of cognitive deterioration in the elderly , 1994, Neurobiology of Aging.

[114]  R. Burton,et al.  Consistency of the Takens estimator for the correlation dimension , 1999 .

[115]  W. Pritchard,et al.  Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. , 1995, Psychophysiology.

[116]  W. Shankle,et al.  A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer's disease , 2002, Clinical Neurophysiology.

[117]  J. Sackellares,et al.  Time dependencies in the occurrences of epileptic seizures , 1994, Epilepsy Research.

[118]  Donald C. Wunsch,et al.  Classification of epileptic EEG using neural network and wavelet transform , 1996, Optics & Photonics.

[119]  Hans A. Braun,et al.  Consequences of deterministic and random dynamics for the course of affective disorders , 1999, Biological Psychiatry.

[120]  F. Takens Detecting strange attractors in turbulence , 1981 .

[121]  Thomas Dierks,et al.  Topography of the quantitative electroencephalogram in dementia of the alzheimer type: Relation to severity of dementia , 1991, Psychiatry Research: Neuroimaging.

[122]  Milan Palus,et al.  Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos , 1996, Biological Cybernetics.

[123]  Danil V. Prokhorov,et al.  Early recognition of Alzheimer's disease in EEG using recurrent neural network and wavelet transform , 2000, SPIE Optics + Photonics.

[124]  L. Aftanas,et al.  Non-linear dynamic complexity of the human EEG during meditation , 2002, Neuroscience Letters.

[125]  Richard Granger,et al.  Identification of Diagnostic Evoked Response Potential Segments in Alzheimer's Disease , 2002, Experimental Neurology.

[126]  C. Stam,et al.  Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls , 1999, Clinical Neurophysiology.

[127]  A. Fernández-Nieves,et al.  Structure formation from mesoscopic soft particles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[128]  I. Dvořák,et al.  Takens versus multichannel reconstruction in EEG correlation exponent estimates , 1990 .

[129]  J. Chae,et al.  Effect of total sleep deprivation on the dimensional complexity of the waking EEG. , 2001, Sleep.

[130]  C. Elger,et al.  Seizure prediction by non‐linear time series analysis of brain electrical activity , 1998, The European journal of neuroscience.

[131]  Marshal F. Folstein,et al.  Aging of the Brain and Dementia , 1983 .

[132]  S. Rombouts,et al.  Investigation of EEG non-linearity in dementia and Parkinson's disease. , 1995, Electroencephalography and clinical neurophysiology.

[133]  Zaven S. Khachaturian,et al.  Alzheimer's disease : cause(s), diagnosis, treatment, and care , 1996 .

[134]  Ricardo Joseph Simeoni,et al.  Bispectral analysis of Alzheimer's electroencephalogram: a preliminary study , 2003 .

[135]  A. Leuchter,et al.  Relationships between EEG Coherence and Neuropsychological Tests in Dementia , 1995, Clinical EEG.

[136]  J Wackermann,et al.  Interhemispheric differences of sleep EEG complexity. , 1996, Acta neurobiologiae experimentalis.

[137]  J Wackermann,et al.  Towards a quantitative characterisation of functional states of the brain: from the non-linear methodology to the global linear description. , 1999, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[138]  Marageĭ Ra,et al.  [Sleep EEG as a nonlinear dynamic process: a comparison of global correlation dimension of human EEG and measures of linear interdependence between channels]. , 2003 .

[139]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[140]  K Kosaka,et al.  Quantitative EEG in patients with presenile and senile dementia of the Alzheimer type , 1994, Acta neurologica Scandinavica.

[141]  F H Duffy,et al.  Brain electrical activity in patients with presenile and senile dementia of the Alzheimer type , 1984, Annals of neurology.

[142]  Jaeseung Jeong Nonlinear dynamics of EEG in Alzheimer's disease , 2002 .

[143]  Erik W. Jensen,et al.  EEG complexity as a measure of depth of anesthesia for patients , 2001, IEEE Trans. Biomed. Eng..

[144]  S. Benbadis,et al.  Epileptic seizures and syndromes. , 2001, Neurologic clinics.

[145]  G. Rondouin,et al.  Diagnostic value of quantitative EEG in Alzheimer’s disease , 2001, Neurophysiologie Clinique/Clinical Neurophysiology.

[146]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[147]  S. Mallat A wavelet tour of signal processing , 1998 .

[148]  C M Michel,et al.  Intracerebral dipole source localization for FFT power maps. , 1990, Electroencephalography and clinical neurophysiology.

[149]  Nariyoshi Yamaguchi,et al.  Electroencephalographic abnormalities in patients with presenile dementia of the Alzheimer type: Quantitative analysis at rest and during photic stimulation , 1997, Biological Psychiatry.

[150]  Hojjat Adeli,et al.  An Adaptive Conjugate Gradient Neural Network–Wavelet Model for Traffic Incident Detection , 2000 .

[151]  D O Walter,et al.  Regional differences in brain electrical activity in dementia: use of spectral power and spectral ratio measures. , 1993, Electroencephalography and clinical neurophysiology.

[152]  Robert Sataloff,et al.  Chaos In Medicine: Source Readings , 2000 .

[153]  Dae-Jin Kim,et al.  Synergetic analysis of spatio-temporal EEG patterns: Alzheimer's disease , 2001, Biological Cybernetics.

[154]  Adrian P Burgess,et al.  Changes in neural complexity during the perception of 3D images using random dot stereograms. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[155]  Soo-Yong Kim,et al.  Nonlinear Dynamic Analysis of the EEG in Patients with Alzheimer’s Disease and Vascular Dementia , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[156]  R. Polikar,et al.  Multiresolution wavelet analysis of ERPs for the detection of Alzheimer's disease , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[157]  W. Markesbery,et al.  The Neuropathology of Alzheimer's Disease: Diagnostic Features and Standardization , 1996 .