Anion-adaptive crystalline cationic material for 99TcO4− trapping

[1]  J. Chen,et al.  99TcO4− remediation by a cationic polymeric network , 2018, Nature Communications.

[2]  Feihe Huang,et al.  Nonporous Adaptive Crystals of Pillararenes. , 2018, Accounts of chemical research.

[3]  V. Khrustalev,et al.  Finding a receptor design for selective recognition of perrhenate and pertechnetate: hydrogen vs. halogen bonding. , 2018, Chemical communications.

[4]  Jun Wang,et al.  Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites , 2018 .

[5]  Jing-Xin Liu,et al.  Anion encapsulation and complexation by cucurbit[n]urils and their derivatives , 2018, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[6]  Tanya K. Ronson,et al.  Selective Anion Extraction and Recovery Using a FeII 4L4 Cage , 2018, Angewandte Chemie.

[7]  N. Khashab,et al.  Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network. , 2018, Journal of the American Chemical Society.

[8]  Tanya K. Ronson,et al.  Selective Anion Extraction and Recovery Using a Fe II4 L 4 Cage , 2018 .

[9]  S. Rogge,et al.  Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals , 2018, Nature Communications.

[10]  S. Kubik Anion Recognition in Aqueous Media by Cyclopeptides and Other Synthetic Receptors. , 2017, Accounts of chemical research.

[11]  O. Farha,et al.  Identifying the Recognition Site for Selective Trapping of 99TcO4- in a Hydrolytically Stable and Radiation Resistant Cationic Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[12]  J. Contreras-Garcı́a,et al.  Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. , 2017, Physical chemistry chemical physics : PCCP.

[13]  R. Zhou,et al.  Exceptional Perrhenate/Pertechnetate Uptake and Subsequent Immobilization by a Low-Dimensional Cationic Coordination Polymer: Overcoming the Hofmeister Bias Selectivity , 2017 .

[14]  Hui Wang,et al.  Supramolecular organic frameworks (SOFs): Homogeneous regular 2D and 3D pores in water , 2017 .

[15]  P. Beer,et al.  Selective perrhenate recognition in pure water by halogen bonding and hydrogen bonding alpha-cyclodextrin based receptors. , 2017, Chemical communications.

[16]  J. Chen,et al.  Efficient and Selective Uptake of TcO4- by a Cationic Metal-Organic Framework Material with Open Ag+ Sites. , 2017, Environmental science & technology.

[17]  M. Schweiger,et al.  Removal of Pertechnetate-Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks. , 2016, Chemistry.

[18]  Z. Nie,et al.  Zirconium-Based Metal-Organic Framework for Removal of Perrhenate from Water. , 2016, Inorganic chemistry.

[19]  Aamod V. Desai,et al.  A Water-Stable Cationic Metal-Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. , 2016, Angewandte Chemie.

[20]  M. Kanatzidis,et al.  Removal of TcO4– from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials , 2016 .

[21]  M. Schweiger,et al.  Removal of TcO4(-) ions from solution: materials and future outlook. , 2016, Chemical Society reviews.

[22]  Hui Wang,et al.  Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production , 2016, Nature Communications.

[23]  S. Oliver,et al.  Reversible, Selective Trapping of Perchlorate from Water in Record Capacity by a Cationic Metal-Organic Framework. , 2016, Environmental science & technology.

[24]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[25]  G. V. Kolesnikov,et al.  Perrhenate and pertechnetate anion recognition properties of cyclo[8]pyrrole , 2015 .

[26]  V. Šindelář,et al.  A bambusuril macrocycle that binds anions in water with high affinity and selectivity. , 2015, Angewandte Chemie.

[27]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[28]  S. Aloni,et al.  Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals , 2014, Nature Communications.

[29]  Wei‐Yin Sun,et al.  Cucurbit[6]uril-based supramolecular assemblies: possible application in radioactive cesium cation capture. , 2014, Journal of the American Chemical Society.

[30]  G. Bergamaschi,et al.  Fluorescent sensing of 99Tc pertechnetate in water , 2014 .

[31]  Z. Tao,et al.  Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. , 2014, Accounts of chemical research.

[32]  M. Vendruscolo,et al.  Cucurbit[8]uril and blue-box: high-energy water release overwhelms electrostatic interactions. , 2013, Journal of the American Chemical Society.

[33]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[34]  C. Milanese,et al.  Supramolecular receptors in solid phase: developing sensors for anionic radionuclides. , 2013, Dalton transactions.

[35]  G. Bergamaschi,et al.  99TcO4(-): selective recognition and trapping in aqueous solution. , 2012, Angewandte Chemie.

[36]  Oren A Scherman,et al.  Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. , 2012, Journal of the American Chemical Society.

[37]  D. Hobbs,et al.  Selectivity, Kinetics, and Efficiency of Reversible Anion Exchange with TcO4− in a Supertetrahedral Cationic Framework , 2012 .

[38]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[39]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[40]  Honghan Fei,et al.  A new paradigm for anion trapping in high capacity and selectivity: crystal-to-crystal transformation of cationic materials. , 2011, Journal of the American Chemical Society.

[41]  G. Lumetta,et al.  Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes , 2011 .

[42]  Jie Zhang,et al.  Anion-linked cucurbit[6]uril frameworks formed by microwave-assisted synthesis in ionic liquids , 2010 .

[43]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[44]  J. Švec,et al.  Bambus[6]uril. , 2010, Angewandte Chemie.

[45]  W. Casey,et al.  NDTB-1: a supertetrahedral cationic framework that removes TcO4- from solution. , 2010, Angewandte Chemie.

[46]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[47]  G. V. Kolesnikov,et al.  Molecular recognition of pertechnetate and perrhenate. , 2009, Chemical Society reviews.

[48]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[49]  B. Moyer,et al.  Anion Separation with Metal–Organic Frameworks , 2007 .

[50]  Eunju Kim,et al.  Supramolecular assemblies built with host-stabilized charge-transfer interactions. , 2007, Chemical communications.

[51]  Young Ho Ko,et al.  Functionalized cucurbiturils and their applications. , 2007, Chemical Society reviews.

[52]  Yifeng Wang,et al.  Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs). , 2006, Journal of colloid and interface science.

[53]  V. Fedin,et al.  Synthesis and guest exchange reactions of inclusion compounds of cucurbit[8]uril with nickel(II) and copper(II) complexes , 2006 .

[54]  I. E. Burgeson,et al.  Removal of Technetium from Hanford Tank Waste Supernates , 2005 .

[55]  S. Kitagawa,et al.  Dynamic porous properties of coordination polymers inspired by hydrogen bonds. , 2005, Chemical Society reviews.

[56]  B. Myasoedov,et al.  Technetium: behaviour during reprocessing of spent nuclear fuel and in environmental objects , 2003 .

[57]  Natal'ya N Popova,et al.  Technetium: behaviour during reprocessing of spent nuclear fuel and in environmental objects , 2003 .

[58]  E. Molins,et al.  From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems , 2002 .

[59]  J. Davenas,et al.  Stability of polymers under ionising radiation: The many faces of radiation interactions with polymers , 2002 .

[60]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Barry B Snushall,et al.  Controlling factors in the synthesis of cucurbituril and its homologues. , 2001, The Journal of organic chemistry.

[62]  Kimoon Kim,et al.  Selective Inclusion of a Hetero-Guest Pair in a Molecular Host: Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. , 2001, Angewandte Chemie.

[63]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[64]  Young-A Lee,et al.  Smart Molecular Helical Springs as Tunable Receptors , 2000 .

[65]  C. Lecomte,et al.  Topological analysis of the electron density in hydrogen bonds. , 1999, Acta crystallographica. Section B, Structural science.

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[68]  John G. Darab,et al.  Chemistry of Technetium and Rhenium Species during Low-Level Radioactive Waste Vitrification , 1996 .

[69]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .