A new generalized Weibull family of distributions: mathematical properties and applications

We propose a generalized Weibull family of distributions with two extra positive parameters to extend the normal, gamma, Gumbel and inverse Gausssian distributions, among several other well-known distributions. We provide a comprehensive treatment of its general mathematical properties including quantile and generating functions, ordinary and incomplete moments and other properties. We introduce the log-generalized Weibull-log-logistic, this is new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We discuss estimation of the model parameters by maximum likelihood and provide two applications to real data.

[1]  Gauss M. Cordeiro,et al.  Generalized Beta-Generated Distributions , 2010, Comput. Stat. Data Anal..

[2]  Saralees Nadarajah,et al.  The exponentiated Gumbel distribution with climate application , 2006 .

[3]  Gauss M. Cordeiro,et al.  The Weibull-G Family of Probability Distributions , 2014, Journal of Data Science.

[4]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[5]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[6]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[7]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[8]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[9]  Alexandre B. Simas,et al.  Some Results for Beta Fréchet Distribution , 2008, 0809.1873.

[10]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[11]  Samuel Kotz,et al.  The Exponentiated Type Distributions , 2006 .

[12]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[13]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[14]  F. Famoye,et al.  Exponentiated $T$-$X$ Family of Distributions with Some Applications , 2013 .

[15]  A. Rényi On Measures of Entropy and Information , 1961 .

[16]  M. Ward The Representation of Stirling's Numbers and Stirling's Polynomials as Sums of Factorials , 1934 .

[17]  Saralees Nadarajah,et al.  The Kumaraswamy Weibull distribution with application to failure data , 2010, J. Frankl. Inst..

[18]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[19]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[20]  Pushpa L. Gupta,et al.  Modeling failure time data by lehman alternatives , 1998 .

[21]  J. D. Vendramim,et al.  Sublethal effect of neem extract on mediterranean fruit fly adults , 2013 .

[22]  Saralees Nadarajah,et al.  The Exponentiated Gamma Distribution with Application to Drought Data , 2007 .

[23]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[24]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .

[25]  Felix Famoye,et al.  Journal of Modern Applied StatisticalMethods Beta-Weibull Distribution: Some Properties and Applications to Censored Data , 2022 .

[26]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[27]  Ayman Alzaatreh,et al.  A new method for generating families of continuous distributions , 2013 .