Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures

[1]  Chaoyang Wang,et al.  Computational design and refinement of self-heating lithium ion batteries , 2016 .

[2]  Andreas Jossen,et al.  Hybrid Energy Storage Systems for Electric Vehicles: An Experimental Analysis of Performance Improvements at Subzero Temperatures , 2016, IEEE Transactions on Vehicular Technology.

[3]  Yves Dube,et al.  A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures , 2016 .

[4]  Chaoyang Wang,et al.  Lithium-ion battery structure that self-heats at low temperatures , 2016, Nature.

[5]  Chaoyang Wang,et al.  Computational design and re fi nement of self-heating lithium ion batteries , 2016 .

[6]  Thomas Waldmann,et al.  Interplay of Operational Parameters on Lithium Deposition in Lithium-Ion Cells: Systematic Measurements with Reconstructed 3-Electrode Pouch Full Cells , 2016 .

[7]  Chaoyang Wang,et al.  A Fast Rechargeable Lithium-Ion Battery at Subfreezing Temperatures , 2016 .

[8]  Y. Dubé,et al.  Heating Lithium-Ion Batteries with Bidirectional Current Pulses , 2015, 2015 IEEE Vehicle Power and Propulsion Conference (VPPC).

[9]  Xuning Feng,et al.  Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles , 2015 .

[10]  O. Dolotko,et al.  Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite , 2015 .

[11]  Michael A. Danzer,et al.  Lithium plating in a commercial lithium-ion battery - A low-temperature aging study , 2015 .

[12]  Jianbo Zhang,et al.  Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain , 2015 .

[13]  Jeremy Neubauer,et al.  The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility , 2014 .

[14]  Joseph M. DeSimone,et al.  Nonflammable perfluoropolyether-based electrolytes for lithium batteries , 2014, Proceedings of the National Academy of Sciences.

[15]  Shiyou Li,et al.  A low-temperature electrolyte for lithium-ion batteries , 2014, Ionics.

[16]  Chaoyang Wang,et al.  Heating strategies for Li-ion batteries operated from subzero temperatures , 2013 .

[17]  Chaoyang Wang,et al.  Li-Ion Cell Operation at Low Temperatures , 2013 .

[18]  M. Armand,et al.  Building better batteries , 2008, Nature.

[19]  S. Chakraborty,et al.  New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries , 2006 .

[20]  K. Gering Low-Temperature Performance Limitations of Lithium-Ion Batteries , 2006 .

[21]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[22]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[23]  R. Staniewicz,et al.  Improved low temperature performance of lithium ion cells with quaternary carbonate-based electrolytes , 2003 .

[24]  Kang Xu,et al.  The low temperature performance of Li-ion batteries , 2003 .

[25]  T. A. Stuarta,et al.  HEV battery heating using AC currents , 2003 .

[26]  Kang Xu,et al.  A new approach toward improved low temperature performance of Li-ion battery , 2002 .

[27]  Ahmad Pesaran,et al.  Energy Efficient Battery Heating in Cold Climates , 2002 .

[28]  Hsiu-Ping Lin,et al.  Low-Temperature Behavior of Li-Ion Cells , 2001 .

[29]  J. Sakamoto,et al.  The Limits of Low‐Temperature Performance of Li‐Ion Cells , 2000 .

[30]  Yair Ein-Eli,et al.  Li‐Ion Battery Electrolyte Formulated for Low‐Temperature Applications , 1997 .