First principles investigations on electronic and magnetic properties of Fe: SnO monolayer

[1]  Hao Sun,et al.  Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr , 2022, Physical Review B.

[2]  A. Sjåstad,et al.  Prediction of intermediate band in Ti/V doped γ-In2S3 , 2022, RSC advances.

[3]  C. Stampfer,et al.  2D materials for future heterogeneous electronics , 2021, Nature Communications.

[4]  W. Mi,et al.  Half-Metallicity and Magnetic Anisotropy in Transition-Metal-Atom-Doped Graphitic Germanium Carbide (g-GeC) Monolayers , 2021, The Journal of Physical Chemistry C.

[5]  Yong Xu,et al.  2D materials: Rising star for future applications , 2021, Innovation.

[6]  H. Soleimani,et al.  Band structure engineering of NiS2 monolayer by transition metal doping , 2021, Scientific Reports.

[7]  Aiyuan Hu,et al.  Ferromagnetism With High Curie Temperature of Cu Doped LiMgN New Dilute Magnetic Semiconductors , 2021, Frontiers in Materials.

[8]  P. Bogusławski,et al.  Theory of the sp–d coupling of transition metal impurities with free carriers in ZnO , 2020, Scientific Reports.

[9]  K. Zhou,et al.  Vacancies and dopants in two-dimensional tin monoxide: An ab initio study , 2020, Applied Surface Science.

[10]  Xiang Guo,et al.  The magnetic, optical and electronic properties of Mn–X(X = O, Se, Te, Po) co-doped MoS2 monolayers via first principle calculation , 2020, Materials Research Express.

[11]  B. Diény,et al.  Review on spintronics: Principles and device applications , 2020, Journal of Magnetism and Magnetic Materials.

[12]  Debajit Chakraborty,et al.  Next-generation non-local van der Waals density functional. , 2020, Journal of chemical theory and computation.

[13]  M. Tayyab,et al.  Effect of Cu concentration and dopant site on the band gap of MoS2: A DFT study , 2020 .

[14]  A. Benyoussef,et al.  Rare-Earths (Pr, Pm, Sm, Dy, and Tm)-Doped SnO2: Ab Initio, Mean Field, and Monte Carlo Calculation , 2020, Journal of Superconductivity and Novel Magnetism.

[15]  FIRST PRINCIPLES: , 2020, First Things.

[16]  H. Iizuka,et al.  Magnetic properties of 3d transition metal (Sc–Ni) doped plumbene , 2020, RSC advances.

[17]  M. Abdel-Hafiez,et al.  Effect of metal dopant on structural and magnetic properties of ZnO nanoparticles , 2020, Journal of Materials Science: Materials in Electronics.

[18]  Li An,et al.  Structure, elastic characteristic, ideal strengths, and phonon stability of binary uranium intermetallic UGe3 of AuCu3-type. , 2019, Physical chemistry chemical physics : PCCP.

[19]  K. Zhou,et al.  Strain-driven superplasticity of ultrathin tin (II) oxide films and the modulation of their electronic properties: A first-principles study , 2019 .

[20]  Yufei Xue,et al.  Effect of Fe doping concentration on photocatalytic performance of CeO2 from DFT insight into analysis , 2019, AIP Advances.

[21]  A. Georges,et al.  Superexchange mechanism and quantum many body excitations in the archetypal di-Cu oxo-bridge , 2019, Communications Physics.

[22]  W. Mi,et al.  Electronic structure and magnetic properties of 3d transition-metal atom adsorbed SnO monolayers , 2019, Applied Surface Science.

[23]  Lixiu Guan,et al.  Prediction of directional magnetic-exchange coupling in Mn doped γ-InSe monolayer , 2019, Results in Physics.

[24]  Marjolein Dijkstra,et al.  Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides , 2019, npj 2D Materials and Applications.

[25]  Kostiantyn V. Sopiha,et al.  Energy, Phonon, and Dynamic Stability Criteria of Two-Dimensional Materials. , 2019, ACS applied materials & interfaces.

[26]  G. Mandal,et al.  Significant reduction in the optical band-gap and defect assisted magnetic response in Fe-doped anatase TiO2 nanocrystals as dilute magnetic semiconductors , 2019, New Journal of Chemistry.

[27]  Zikang Tang,et al.  Super-exchange theory for polyvalent anion magnets , 2019, New Journal of Physics.

[28]  Jinho Ahn,et al.  Understanding of relationship between dopant and substitutional site to develop novel phase-change materials based on In3SbTe2 , 2019, Japanese Journal of Applied Physics.

[29]  Kostiantyn V. Sopiha,et al.  Energy, phonon, and dynamic stability criteria of 2d materials. , 2019, 1901.07202.

[30]  Yu Yan,et al.  Magnetism induced by Mn atom doping in SnO monolayer , 2018, Chinese Physics B.

[31]  O. Yazyev,et al.  Crystal field, ligand field, and interorbital effects in two-dimensional transition metal dichalcogenides across the periodic table , 2018, 2D Materials.

[32]  Xiaohong Li,et al.  Adsorption of 3d transition-metal atom on InSe monolayer: A first-principles study , 2018, Computational Materials Science.

[33]  Caizhuang Wang,et al.  Tailoring Bandgap of Perovskite BaTiO3 by Transition Metals Co-Doping for Visible-Light Photoelectrical Applications: A First-Principles Study , 2018, Nanomaterials.

[34]  Qingpu Wang,et al.  Organic and inorganic passivation of p-type SnO thin-film transistors with different active layer thicknesses , 2018, Semiconductor Science and Technology.

[35]  T. Rappoport,et al.  Crystal-field effects in graphene with interface-induced spin-orbit coupling , 2018, Physical Review B.

[36]  Sean Li,et al.  Transition Metal-Doped Tin Monoxide Monolayer: A First-Principles Study , 2018 .

[37]  Shishen Yan,et al.  Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice , 2017 .

[38]  H. Ohno,et al.  Spintronics based random access memory: a review , 2017 .

[39]  S. Ma,et al.  Effect of Mn doping on the structural, morphological and optical properties of SnO2 nanoparticles prepared by Sol-gel method , 2017 .

[40]  Lixiu Guan,et al.  Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms , 2017, Scientific Reports.

[41]  B. Nanda,et al.  Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  U. Schwingenschlögl,et al.  Magnetism in 3d transition metal doped SnO , 2016 .

[43]  Yan Zhang,et al.  Structure and properties of phosphorene-like IV-VI 2D materials , 2016, Nanotechnology.

[44]  B. Partoens,et al.  Extended homologous series of Sn-O layered systems : a first-principles study , 2016, 1606.06187.

[45]  Ashutosh Tiwari,et al.  2D Tin Monoxide—An Unexplored p‐Type van der Waals Semiconductor: Material Characteristics and Field Effect Transistors , 2016 .

[46]  A. Neto,et al.  Multiferroic Two-Dimensional Materials. , 2016, Physical review letters.

[47]  M. G. Campbell,et al.  Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes , 2016 .

[48]  E. Carter,et al.  Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: A theoretical study , 2016 .

[49]  Z. Fuchun,et al.  Density Functional Theory Study on the Electronic Structure and Optical Properties of SnO2 , 2015 .

[50]  A. Abbassi,et al.  Magnetic Properties of Transition Metal-Doped CdSe , 2015 .

[51]  G. Rignanese,et al.  High-Mobility Bismuth-based Transparent p-Type Oxide from High-Throughput Material Screening , 2014, 1412.4429.

[52]  Yisong Zheng,et al.  First-principles study of 3d transition metal atom adsorption onto graphene: the role of the extended line defect , 2014 .

[53]  Glenn Jones,et al.  The influence of the Hubbard U parameter in simulating the catalytic behaviour of cerium oxide. , 2014, Physical chemistry chemical physics : PCCP.

[54]  M. Tanveer,et al.  Fabrication, characterization and magnetic properties of Mn-doped SnO nanostructures via hydrothermal method , 2014 .

[55]  S. Naseem,et al.  Ferromagnetic Effects in Cr-Doped Fe2O3 Thin Films , 2014, IEEE Transactions on Magnetics.

[56]  Shiwei Lin,et al.  First-principles study on transition metal-doped anatase TiO2 , 2014, Nanoscale Research Letters.

[57]  D. Scanlon,et al.  Understanding the defect chemistry of tin monoxide , 2013 .

[58]  Xinlu Cheng,et al.  Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers , 2013 .

[59]  A. Janotti,et al.  Ambipolar doping in SnO , 2013 .

[60]  Gerbrand Ceder,et al.  Identification and design principles of low hole effective mass p-type transparent conducting oxides , 2013, Nature Communications.

[61]  J. Woicik,et al.  Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory , 2013 .

[62]  M. Halcrow Jahn—Teller Distortions in Transition Metal Compounds, and Their Importance in Functional Molecular and Inorganic Materials , 2013 .

[63]  B. Partoens,et al.  van der Waals bonding and the quasiparticle band structure of SnO from first principles , 2013 .

[64]  J. Wesselinowa,et al.  Origin of ferromagnetism in transition metal doped BaTiO3 , 2013 .

[65]  Husam N. Alshareef,et al.  Record mobility in transparent p-type tin monoxide films and devices by phase engineering. , 2013, ACS nano.

[66]  J. Burdett,et al.  Orbital Interactions in Chemistry: Albright/Orbital Interactions in Chemistry , 2013 .

[67]  J. Moussy From epitaxial growth of ferrite thin films to spin-polarized tunnelling , 2013 .

[68]  Jiahong Ma,et al.  Electronic structure and magnetism of V-doped AlN , 2013 .

[69]  R. Saleh,et al.  The Effect of Co Incorporation into ZnO Nanoparticles , 2013 .

[70]  Ying Dai,et al.  Investigation of magnetic properties induced by group-V element in doped ZnO. , 2013, Physical chemistry chemical physics : PCCP.

[71]  E. Kogan,et al.  RKKY Interaction in Gapped or Doped Graphene , 2012, 1211.5775.

[72]  Chunlei Yang,et al.  Ga vacancy induced ferromagnetism enhancement and electronic structures of RE-doped GaN , 2012 .

[73]  Chennupati Jagadish,et al.  Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate , 2012 .

[74]  S. Rao,et al.  Concentration Dependence of Magnetic Moment in Ce 1-x Fe x O 2 , 2012 .

[75]  S. C. Parker,et al.  Tin Monoxide: Structural Prediction from First Principles Calculations with van der Waals Corrections , 2011 .

[76]  V. Ji,et al.  Structural, electronic and magnetic properties of the 3d transition metal atoms adsorbed on boron nitride nanotubes , 2010 .

[77]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[78]  H. Hosono Transparent Oxide Semiconductors: Fundamentals and Recent Progress , 2010 .

[79]  N. English,et al.  Magnetic properties of first-row element-doped ZnS semiconductors: A density functional theory investigation , 2009 .

[80]  Youwei Du,et al.  The origins of ferromagnetism in Co-doped ZnO single crystalline films: From bound magnetic polaron to free carrier-mediated exchange interaction , 2009 .

[81]  S. Takeyama,et al.  Electronic structures and p − d exchange interaction of Mn-doped diluted magnetic semiconductors , 2008 .

[82]  Z. Sha,et al.  Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations , 2008 .

[83]  M. Solà,et al.  Importance of the basis set for the spin-state energetics of iron complexes. , 2008, The journal of physical chemistry. A.

[84]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[85]  M. Fanciulli,et al.  Defect-related local magnetism at dilute Fe atoms in ion-implanted ZnO , 2007 .

[86]  Sangam Banerjee,et al.  Influence of Mn doping on the microstructure and optical property of ZnO , 2007 .

[87]  Z. Xiong,et al.  First-principles study of electronic structure and ferromagnetism in Ti-doped ZnO , 2007 .

[88]  Christian Schmeiser,et al.  On the Shockley-Read-Hall Model: Generation-Recombination in Semiconductors , 2007, SIAM J. Appl. Math..

[89]  T. Dietl Hole states in wide band-gap diluted magnetic semiconductors and oxides , 2007, cond-mat/0703278.

[90]  E. Meĭlikhov Diluted magnetic semiconductors with correlated impurities: Mean-field theory with RKKY interaction , 2007 .

[91]  Isao Tanaka,et al.  First-principles calculations of native defects in tin monoxide , 2006 .

[92]  M. Engelhard,et al.  Development of high-temperature ferromagnetism in Sn O 2 and paramagnetism in SnO by Fe doping , 2005 .

[93]  M. Venkatesan,et al.  Donor impurity band exchange in dilute ferromagnetic oxides , 2005, Nature materials.

[94]  I. Turek,et al.  Exchange interactions in III-V and group-IV diluted magnetic semiconductors , 2004 .

[95]  M. Venkatesan,et al.  Ferromagnetism in Fe-doped SnO2 thin films , 2004, cond-mat/0401293.

[96]  F. Peeters,et al.  Double-exchange mechanisms for Mn-doped III-V ferromagnetic semiconductors , 2003, cond-mat/0311525.

[97]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[98]  Yu-Jun Zhao,et al.  Ruderman-Kittel-Kasuya-Yosida-like ferromagnetism in MnxGe1-x. , 2003, Physical review letters.

[99]  H. Nakayama,et al.  Theoretical Prediction of Magnetic Properties of Ba(Ti1-xMx)O3 (M=Sc,V,Cr,Mn,Fe,Co,Ni,Cu) , 2001 .

[100]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[101]  G. Watson The origin of the electron distribution in SnO , 2001 .

[102]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[103]  P. Fazekas,et al.  Lecture notes on electron correlation and magnetism , 1999 .

[104]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[105]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[106]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[107]  Heinrich,et al.  Transition-metal impurities in semiconductors and heterojunction band lineups. , 1988, Physical review. B, Condensed matter.

[108]  Langer,et al.  Transition-metal impurities in semiconductors and heterojunction band lineups. , 1988, Physical review letters.

[109]  W. Schaap,et al.  Computing Ligand Field Potentials and Relative Energies of d Orbitals. , 1970 .

[110]  G. D. ADAM,et al.  Physical Principles of Magnetism , 1966, Nature.

[111]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[112]  Wei-xiao Ji,et al.  Strain-tunable skyrmions in two-dimensional monolayer Janus magnets. , 2023, Nanoscale.

[113]  A. Bandyopadhyay,et al.  Magnetic properties of Mn doped ZnO: A Monte Carlo simulation analysis , 2021 .

[114]  Jinho Ahn,et al.  Understanding of relationship between dopant and substitutional site to develop novel phase-change materials based on In 3 SbTe 2 , 2019 .

[115]  杨春雷,et al.  Ga vacancy induced ferromagnetism enhancement and electronic structures of RE-doped GaN , 2012 .

[116]  T. Kamiya,et al.  Bipolar Conduction in SnO Thin Films , 2011 .

[117]  N. Zheng Introduction to Dilute Magnetic Semiconductors , 2008 .

[118]  J. J. Morgan Kinetics of reaction between O2 and Mn(II) species in aqueous solutions , 2005 .

[119]  J. Goodenough JAHN-TELLER PHENOMENA IN SOLIDS , 1998 .

[120]  E. Coronado,et al.  Exchange Interactions I: Mechanisms , 1996 .

[121]  Joel S. Miller,et al.  Molecular magnetism : from molecular assemblies to the devices , 1996 .

[122]  Peter Pulay,et al.  Geometry optimization by direct inversion in the iterative subspace , 1984 .

[123]  T. A. Albright Tetrahedron report number 126: Structure and reactivity in organometallic chemistry. An applied molecular orbital approach , 1982 .