Discrete Helmholtz–Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators
暂无分享,去创建一个
Mejdi Azaïez | Stéphane Vincent | Jean-Paul Caltagirone | Antoine Lemoine | J. Caltagirone | S. Vincent | M. Azaïez | A. Lemoine
[1] Willard Miller,et al. The IMA volumes in mathematics and its applications , 1986 .
[2] Philippe Angot,et al. Fast discrete Helmholtz-Hodge decompositions in bounded domains , 2013, Appl. Math. Lett..
[3] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[4] M. Shashkov,et al. Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .
[5] Philippe Angot,et al. A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems , 2012, Appl. Math. Lett..
[6] Luke N. Olson,et al. Algebraic Multigrid for Discrete Differential Forms , 2008 .
[7] Pavel B. Bochev,et al. Principles of Mimetic Discretizations of Differential Operators , 2006 .
[8] Konrad Polthier,et al. Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.
[9] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[10] Theodore A. Bickart. Network Equations , 1964 .
[11] Alexandre Ern,et al. Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes , 2012, 1211.3354.
[12] Enzo Tonti,et al. Why starting from differential equations for computational physics? , 2014, J. Comput. Phys..
[13] Alain Bossavit,et al. Computational electromagnetism and geometry : Building a finite-dimensional "Maxwell's house" (1) : Network equations , 1999 .
[14] R. Eymard,et al. 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .
[15] Zhuoxiang Ren. Influence of the RHS on the convergence behaviour of the curl-curl equation , 1996 .
[16] Santiago V. Lombeyda,et al. Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..
[17] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[18] Lorenzo Codecasa,et al. A new set of basis functions for the discrete geometric approach , 2010, J. Comput. Phys..
[19] Mrinal K. Mandal,et al. Efficient Hodge-Helmholtz decomposition of motion fields , 2005, Pattern Recognit. Lett..
[20] Alexandre Ern,et al. Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes , 2014, ArXiv.
[21] M. Shashkov,et al. Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .
[22] M.J. Bluck,et al. High-Order Discrete Helmholtz Decompositions for the Electric Field Integral Equation , 2007, IEEE Transactions on Antennas and Propagation.
[23] M. Shashkov,et al. A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .
[24] M. Shashkov,et al. The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .
[25] M. Shashkov,et al. Compatible spatial discretizations , 2006 .
[26] Valerio Pascucci,et al. The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.