Discrete Helmholtz–Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators

This article provides a methodology to perform discrete Helmholtz–Hodge decomposition on three-dimensional polyhedral meshes using structure-preserving schemes: the Compatible Discrete Operator schemes. We propose to extract the decomposition components independently with one equation to solve per component or potential. The key of the method is the choice of a discrete Hodge operator that makes a compromise between convergence rate and computational cost. Numerical experiments are performed to evaluate the convergence rate and the computational cost on various polyhedral meshes, in particular, on the FVCA benchmark meshes. We also investigate some linear solver capabilities to solve our equations. The main contribution of this paper is the application of the CDO schemes to the Hodge decomposition and the required solvers.

[1]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[2]  Philippe Angot,et al.  Fast discrete Helmholtz-Hodge decompositions in bounded domains , 2013, Appl. Math. Lett..

[3]  D. R. Fokkema,et al.  BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .

[4]  M. Shashkov,et al.  Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .

[5]  Philippe Angot,et al.  A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems , 2012, Appl. Math. Lett..

[6]  Luke N. Olson,et al.  Algebraic Multigrid for Discrete Differential Forms , 2008 .

[7]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[8]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.

[9]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[10]  Theodore A. Bickart Network Equations , 1964 .

[11]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes , 2012, 1211.3354.

[12]  Enzo Tonti,et al.  Why starting from differential equations for computational physics? , 2014, J. Comput. Phys..

[13]  Alain Bossavit,et al.  Computational electromagnetism and geometry : Building a finite-dimensional "Maxwell's house" (1) : Network equations , 1999 .

[14]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[15]  Zhuoxiang Ren Influence of the RHS on the convergence behaviour of the curl-curl equation , 1996 .

[16]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[17]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[18]  Lorenzo Codecasa,et al.  A new set of basis functions for the discrete geometric approach , 2010, J. Comput. Phys..

[19]  Mrinal K. Mandal,et al.  Efficient Hodge-Helmholtz decomposition of motion fields , 2005, Pattern Recognit. Lett..

[20]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes , 2014, ArXiv.

[21]  M. Shashkov,et al.  Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .

[22]  M.J. Bluck,et al.  High-Order Discrete Helmholtz Decompositions for the Electric Field Integral Equation , 2007, IEEE Transactions on Antennas and Propagation.

[23]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[24]  M. Shashkov,et al.  The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .

[25]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[26]  Valerio Pascucci,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.