Synergy between theory and experiment in structure resolution of low-dimensional oxides

In this paper, I review recent progress in joint theoretical and experimental studies aiming at atomic structure determination of low-dimensional metal oxides. Low-dimensional systems can be generally defined as materials of unusual structure that extend to less than three dimensions. In recent years low-dimensional systems have attracted increasing attention of physicists and chemists, and the interest is expected to rise in the near future. Two- and one-dimensional structures in form of thin oxide films or elongated oxide chains have many potential applications including model supports for heterogeneous catalysts and insulating layers in semiconductor industry. The interest in zero-dimensional gas-phase oxide clusters ranges from astrophysics to studies of elementary steps in catalysis. The key prerequisite for understanding physical and chemical properties of low-dimensional systems is a detailed knowledge of their atomic structures. However, such systems frequently present complex structures to solve. Only in a few cases experimental data can provide some information about possible arrangement of atoms, but data interpretation relies to a large extent on intuition. Therefore, in the recent years quantum chemical calculations became an indispensable tool in structure identification of low-dimensional systems, yet the accuracy of theoretical tools is often limited. The results reviewed here demonstrate that often the only way of an unambiguous atomic structure determination of low-dimensional systems are experimental studies combined with theoretical calculations. Particularly the global optimization methods such as genetic algorithm in combination with the density functional theory prove very useful in automatic structure determination of the observed surface structures and gas-phase clusters.

[1]  Lai‐Sheng Wang,et al.  Structural and electronic properties of reduced transition metal oxide clusters, M3O8 and M3O8- (M = Cr, W), from photoelectron spectroscopy and quantum chemical calculations. , 2009, The journal of physical chemistry. A.

[2]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[3]  G. Kresse,et al.  Vanadium oxide nanostructures: from zero- to three-dimensional , 2006 .

[4]  Robert J. Donovan,et al.  Laser Chemistry: Spectroscopy, Dynamics and Applications , 2007 .

[5]  G. Kresse,et al.  Surface structures of ultrathin vanadium oxide films on Pd(111) , 2001 .

[6]  S. Khanna,et al.  Clusters, Superatoms, and Building Blocks of New Materials† , 2009 .

[7]  D. Brandon,et al.  Metastable alumina polymorphs : Crystal structures and transition sequences , 2005 .

[8]  Georg Kresse,et al.  The Pd (100)-(root 5 x root 5)R27 degrees-O surface oxide: A LEED, DFT and STM study , 2007 .

[9]  M. Scheffler,et al.  Parameter-free calculations of total energies, interatomic forces and vibrational entropies of defects in semiconductors , 1988 .

[10]  Y. Chung Practical Guide to Surface Science and Spectroscopy , 2001 .

[11]  Alexander I Boldyrev,et al.  All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.

[12]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[13]  Andreoni,et al.  The chemistry of water on alumina surfaces: reaction dynamics from first principles , 1998, Science.

[14]  H. Winter,et al.  Structure of monolayer silica on Mo(1 1 2) investigated by rainbow scattering under axial surface channeling , 2009 .

[15]  B. Rebours,et al.  Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina , 2001 .

[16]  Matthias Scheffler,et al.  Experimental and theoretical study of oxygen adsorption structures on Ag(111) , 2009, 0904.3734.

[17]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[18]  G. Kresse,et al.  Growth and structure of ultrathin vanadium oxide layers on Pd(111) , 2000 .

[19]  Yan Borodovsky,et al.  Marching to the beat of Moore's Law , 2006, SPIE Advanced Lithography.

[20]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[21]  M. Scheffler,et al.  Thermodynamic Aspects of Bulk and Surface Defects–First-Principle Calculations - , 1988 .

[22]  M. Sierka,et al.  Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra. , 2005, Physical review letters.

[23]  M. Knickelbein,et al.  Photodissociation spectroscopy of NbnArm complexes , 1993 .

[24]  G. Kresse,et al.  Reduction of vanadium-oxide monolayer structures , 2005 .

[25]  Vibrational spectra of small silicon monoxide cluster cations measured by infrared multiple photon dissociation spectroscopy. , 2008, Physical chemistry chemical physics : PCCP.

[26]  D. Bohme,et al.  Ions in space. , 2007, Mass spectrometry reviews.

[27]  M. Hove Atomic-scale structure: From surfaces to nanomaterials , 2009 .

[28]  J. Trottier,et al.  Book Review: Mass Spectrometry: Principles and Applications. E. de Hoffman, J. Charette and W. Stroobant. Wiley, Chichester 1996. ISBN 0 471 96697 5 , 1997 .

[29]  B. Hartke,et al.  GLOBAL GEOMETRY OPTIMIZATION OF SILICON CLUSTERS EMPLOYING EMPIRICAL POTENTIALS, DENSITY FUNCTIONALS, AND AB INITIO CALCULATIONS , 2005 .

[30]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[31]  Ming-Teh Hsu,et al.  Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes , 1991 .

[32]  M. Bäumer,et al.  Morphological and electronic properties of ultrathin crystalline silica epilayers on a Mo(112) substrate , 2002 .

[33]  G. Meijer,et al.  Infrared spectroscopy of niobium oxide cluster cations in a molecular beam: identifying the cluster structures. , 2003, Journal of the American Chemical Society.

[34]  G. Kresse,et al.  Thermodynamically controlled self-assembly of two-dimensional oxide nanostructures. , 2004, Angewandte Chemie.

[35]  E. Taglauer,et al.  Low-energy ion scattering at surfaces , 1993 .

[36]  Flemming Besenbacher,et al.  Scanning tunneling microscopy as a tool to study catalytically relevant model systems. , 2008, Chemical Society reviews.

[37]  C. J. Weststrate,et al.  Stressing Pd atoms: Initial oxidation of the Pd(110) surface , 2008 .

[38]  G. Helden,et al.  Experimental study of gas phase titanium and aluminum oxide clusters , 2004 .

[39]  J. Gustafson,et al.  Step-orientation-dependent oxidation: from 1D to 2D oxides. , 2008, Physical review letters.

[40]  E. Lægsgaard,et al.  Atomic-scale surface science phenomena studied by scanning tunneling microscopy , 2009 .

[41]  G. Helden,et al.  Resonant Ionization Using IR Light: A New Tool To Study the Spectroscopy and Dynamics of Gas-Phase Molecules and Clusters , 2003 .

[42]  Hongjun Gao,et al.  Interplay between theory and experiment in the quest for silica with reduced dimensionality grown on a Mo(112) surface , 2006 .

[43]  M. Hove Atomic‐scale surface structure determination: comparison of techniques , 1999 .

[44]  Joshua Jortner,et al.  Nanostructured advanced materials. Perspectives and directions , 2002 .

[45]  H. Winter,et al.  Ion beam triangulation of ultrathin Mn and CoMn films grown on Cu(001). , 2003, Physical review letters.

[46]  D. Wayne Goodman,et al.  Metal nanoclusters supported on metal oxide thin films: bridging the materials gap , 2000 .

[47]  H. Schwarz,et al.  Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. , 2005, Angewandte Chemie.

[48]  H. Freund Clusters and islands on oxides: from catalysis via electronics and magnetism to optics , 2002 .

[49]  L. Tsang,et al.  Theory of low-energy electron diffraction for detailed structural determination of nanomaterials: Ordered structures , 2007 .

[50]  E. Lense,et al.  Alumina chemicals : science and technology handbook , 1990 .

[51]  G. Kresse,et al.  Growth and decay of the Pd(111)-Pd5O4 surface oxide : Pressure-dependent kinetics and structural aspects , 2006 .

[52]  R. Spontak,et al.  Atomic layer deposition on electrospun polymer fibers as a direct route to AL2O3 microtubes with precise wall thickness control. , 2007, Nano letters.

[53]  K. Fukui,et al.  Oxygen adsorption states on Mo(112) surface studied by HREELS , 2002 .

[54]  M. Scheffler,et al.  Ultrathin oxides: bulk-oxide-like model surfaces or unique films? , 2007, Physical review letters.

[55]  Stefan Goedecker,et al.  The performance of minima hopping and evolutionary algorithms for cluster structure prediction. , 2009, The Journal of chemical physics.

[56]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[57]  A. Venezia X-ray photoelectron spectroscopy (XPS) for catalysts characterization , 2003 .

[58]  K. Rademann,et al.  Mass-selected infrared photodissociation spectroscopy of v4o10+ , 2002 .

[59]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[60]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[61]  F. Liebau,et al.  Structural Chemistry of Silicates: Structure, Bonding, and Classification , 1985 .

[62]  Sautet,et al.  Structure and contrast in scanning tunneling microscopy of oxides: FeO monolayer on Pt(111). , 1996, Physical review. B, Condensed matter.

[63]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[64]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[65]  William L. Hase,et al.  Structures, Energies, and Electrostatics for Methane Complexed with Alumina Clusters , 2000 .

[66]  M. Kappes,et al.  The structures of Ag55+ and Ag55- : trapped ion electron diffraction and density functional theory. , 2005, Nano letters.

[67]  L. Tsang,et al.  Theory of low-energy electron diffraction for detailed structural determination of nanomaterials: Finite-size and disordered structures , 2007 .

[68]  C. A. Estrada,et al.  Synthesis and characterization of ultra-thin MgO films on Mo(100) , 1991 .

[69]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[70]  Roy L. Johnston,et al.  Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data , 2000 .

[71]  Joachim Sauer,et al.  Identification of conical structures in small aluminum oxide clusters: infrared spectroscopy of (Al2O3)1-4(AlO)+. , 2008, Journal of the American Chemical Society.

[72]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[73]  S. Bulusu,et al.  Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Robert Raja,et al.  Single-site heterogeneous catalysts. , 2005, Angewandte Chemie.

[75]  M. A. Van Hove,et al.  From Surface Science to Nanotechnology , 2006 .

[76]  G. Kresse,et al.  Vanadium surface oxides on Pd(111): A structural analysis , 2003 .

[77]  John Arthur Niesse,et al.  Global optimization of atomic and molecular clusters using the space‐fixed modified genetic algorithm method , 1997 .

[78]  Pandey,et al.  Ab initio theory of polar semiconductor surfaces. I. Methodology and the (22) reconstructions of GaAs(111). , 1987, Physical review. B, Condensed matter.

[79]  I. Schuller New class of layered materials , 1980 .

[80]  Joachim Sauer,et al.  Oxygen adsorption on Mo(112) surface studied by ab initio genetic algorithm and experiment. , 2007, The Journal of chemical physics.

[81]  E. Herbst Chemistry of star-forming regions. , 2005, The journal of physical chemistry. A.

[82]  R. Nieminen,et al.  Density-functional study of oxygen adsorption on Mo(112). , 2004, The Journal of chemical physics.

[83]  Lai‐Sheng Wang,et al.  On the structure and chemical bonding of tri-tungsten oxide clusters W3On- and W3On (n=7-10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides. , 2006, The journal of physical chemistry. A.

[84]  H. Freund,et al.  Growth of stoichiometric subnanometer silica films , 2008 .

[85]  G. Kresse,et al.  Planar vanadium oxide clusters: two-dimensional evaporation and diffusion on Rh(111). , 2004, Physical review letters.

[86]  Lai‐Sheng Wang,et al.  Probing the electronic structure of transition metal clusters from molecular to bulk-like using photoelectron spectroscopy , 1998 .

[87]  A. Shvartsburg,et al.  Structural information from ion mobility measurements: applications to semiconductor clusters , 2001 .

[88]  R. Ahlrichs,et al.  Theoretical investigation of clusters of phosphorus and arsenic: fascination and temptation of high symmetries. , 2008, Chemistry.

[89]  H. Winter Collisions of atoms and ions with surfaces under grazing incidence , 2002 .

[90]  M. Kappes,et al.  A time-of-flight, drift cell, quadrupole apparatus for ion mobility measurements , 2002 .

[91]  J. Behler,et al.  Structure determination of isolated metal clusters via far-infrared spectroscopy. , 2004, Physical review letters.

[92]  Parks,et al.  Diffraction of trapped (CsI)(n)Cs+: the appearance of bulk structure , 2000, Physical review letters.

[93]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[94]  D. P. Woodruff,et al.  Adsorbate structure determination on surfaces using photoelectron diffraction , 1994 .

[95]  Adsorption and dissociation of water on relaxed alumina clusters: a first principles study , 2005 .

[96]  Lai‐Sheng Wang,et al.  Structural evolution, sequential oxidation, and chemical bonding in tritantalum oxide clusters: Ta(3)O(n)(-) and Ta(3)O(n) (n = 1-8). , 2009, The journal of physical chemistry. A.

[97]  M Schmid,et al.  Nanotemplate with holes: ultrathin alumina on Ni3Al(111). , 2007, Physical review letters.

[98]  Lai‐Sheng Wang,et al.  Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO(2))(n)(-) (n = 1-10) using photoelectron spectroscopy. , 2007, Journal of the American Chemical Society.

[99]  D. Goodman,et al.  Particulate Cu on Ordered Al2O3: Reactions with Nitric Oxide and Carbon Monoxide , 1994 .

[100]  G. Pacchioni,et al.  Structure of ultrathin crystalline SiO2 films on Mo(112) , 2004 .

[101]  J. Stultz,et al.  Dissociation of Water on a Flat, Ordered Silica Surface , 2003 .

[102]  Bicai Pan,et al.  Structures of medium-sized silicon clusters , 1998, Nature.

[103]  M. Scheffler,et al.  Erratum: Composition, structure, and stability of RuO2(110) as a function of oxygen pressure [Phys. Rev. B 65, 035406 (2001)] , 2007 .

[104]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[105]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[106]  H. Freund,et al.  Formation of a faceted MoO2 epilayer on Mo(112) studied by XPS, UPS and STM , 2004 .

[107]  R. Martoňák,et al.  Crystal structure prediction and simulations of structural transformations: metadynamics and evolutionary algorithms , 2007 .

[108]  H. Freund,et al.  Molecular beam experiments on model catalysts , 2005 .

[109]  Lai‐Sheng Wang,et al.  Probing the electronic and structural properties of the niobium trimer cluster and its mono- and dioxides: Nb3On- and Nb3On (n = 0-2). , 2009, The journal of physical chemistry. A.

[110]  Y. Qian,et al.  From sheets to fibers: A novel approach to gamma-AlOOH and gamma-A12O3 1D nanostructures. , 2006, Journal of nanoscience and nanotechnology.

[111]  M. Scheffler,et al.  Chalcogen and Vacancy Pairs in Silicon: Electronic Structure and Stabilities , 1986 .

[112]  Lai‐Sheng Wang,et al.  The [(AL2O3)2]- anion cluster: electron localization-delocalization isomerism. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[113]  F Mittendorfer,et al.  Initial oxidation of the Rh(110) surface: ordered adsorption and surface oxide structures. , 2006, The Journal of chemical physics.

[114]  G. Somorjai Concepts, Instruments, and Model Systems that Enabled the Rapid Evolution of Surface Science , 2009 .

[115]  Bernd Hartke,et al.  Application of Evolutionary Algorithms to Global Cluster Geometry Optimization , 2004 .

[116]  R. Mitrić,et al.  Clusters as model systems for investigating nanoscale oxidation catalysis , 2009 .

[117]  Gianfranco Pacchioni,et al.  Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. , 2008, Chemical Society reviews.

[118]  K. Pandey,et al.  Reconstruction of semiconductor surfaces : buckling, ionicity, and pair-bonded chains , 1982 .

[119]  M. Boudart Model catalysts: reductionism for understanding , 2000 .

[120]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[121]  Julius Jellinek,et al.  Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses , 2005 .

[122]  J. Sauer,et al.  Structure and reactivity of V2O5: bulk solid, nanosized clusters, species supported on silica and alumina, cluster cations and anions , 2004 .

[123]  R. O'hair,et al.  Gas Phase Ion Chemistry of Transition Metal Clusters: Production, Reactivity, and Catalysis , 2004 .

[124]  K. Asmis,et al.  Formation and photodepletion of cluster ion–messenger atom complexes in a cold ion trap: Infrared spectroscopy of VO+, VO+2, and VO+3 , 2003 .

[125]  Jeppe V. Lauritsen,et al.  Model Catalyst Surfaces Investigated by Scanning Tunneling Microscopy , 2006 .

[126]  T. Risse,et al.  Models in heterogeneous catalysis: Surface science quo vadis? , 2001 .

[127]  M Schmid,et al.  Oxygen-deficient line defects in an ultrathin aluminum oxide film. , 2006, Physical review letters.

[128]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[129]  David A. Dixon,et al.  Probing the electronic and structural properties of chromium oxide clusters (CrO3)n(-) and (CrO3)n (n = 1-5): photoelectron spectroscopy and density functional calculations. , 2008, Journal of the American Chemical Society.

[130]  G. Ertl,et al.  Catalysis and Surface Science , 1999 .

[131]  M. Scheffler,et al.  Structure determination of small vanadium clusters by density-functional theory in comparison with experimental far-infrared spectra. , 2005, The Journal of chemical physics.

[132]  W. Paszkowicz,et al.  Genetic Algorithms, a Nature-Inspired Tool: A Survey of Applications in Materials Science and Related Fields: Part II , 2009 .

[133]  Peter Chen Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts. , 2003, Angewandte Chemie.

[134]  M. Bäumer,et al.  Oxygen-induced p(2x3) reconstruction on Mo(112) studied by LEED and STM , 2002 .

[135]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[136]  Joachim Sauer,et al.  Unexpected structures of aluminum oxide clusters in the gas phase. , 2007, Angewandte Chemie.

[137]  K. Fukui,et al.  Chemisorption of CO and H2 on clean and oxygen-modified Mo(112) , 1993 .

[138]  Yang Guo,et al.  Superconductivity Modulated by Quantum Size Effects , 2004, Science.

[139]  Chunming Wang,et al.  Supercritical preparation of hexagonal γ-alumina nanosheets and its electrocatalytic properties , 2008 .

[140]  Jijun Zhao,et al.  Genetic Algorithms for the Geometry Optimization of Atomic and Molecular Clusters , 2004 .

[141]  Lai‐Sheng Wang,et al.  Photoelectron spectroscopy of size‐selected transition metal clusters: Fe−n, n=3–24 , 1995 .

[142]  M. Sierka,et al.  Gas phase vibrational spectroscopy of mass-selected vanadium oxide anions. , 2008, Physical chemistry chemical physics : PCCP.

[143]  M Schmid,et al.  Structure of Ag(111)-p(4 x 4)-O: no silver oxide. , 2006, Physical review letters.

[144]  M. Sierka,et al.  On the geometrical and electronic structure of an ultra-thin crystalline silica film grown on Mo( 112) , 2007 .

[145]  A. Castleman Recent Advances in Cluster Science , 2007, European journal of mass spectrometry.

[146]  M. Rokni,et al.  Electron diffraction of trapped cluster ions , 1999 .

[147]  Jinlan Wang,et al.  Structures and electronic properties of Cu20, Ag20, and Au20 clusters with density functional method , 2003 .

[148]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[149]  G. Helden,et al.  Infrared multiple photon dissociation spectroscopy of transition metal oxide cluster cations , 2003 .

[150]  A Michaelides,et al.  Revisiting the structure of the p(4 x 4) surface oxide on Ag(111). , 2006, Physical review letters.

[151]  A. Castleman,et al.  Studies of Metal Oxide Clusters: Elucidating Reactive Sites Responsible for the Activity of Transition Metal Oxide Catalysts , 2002 .

[152]  L. Giordano,et al.  Structure and vibrational spectra of crystalline SiO2 ultra-thin films on Mo(112) , 2005 .

[153]  M. Sierka,et al.  Formation of one-dimensional molybdenum oxide on Mo(112) , 2008 .

[154]  D. P. Woodruff Solved and unsolved problems in surface structure determination , 2002 .

[155]  M. Hogerheijde Chemical Evolution of Protostars , 2005 .

[156]  T. Risse,et al.  Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension , 2003 .

[157]  K. Asmis,et al.  Mass-selective vibrational spectroscopy of vanadium oxide cluster ions. , 2007, Mass spectrometry reviews.

[158]  Lai‐Sheng Wang,et al.  Probing the electronic structure of early transition-metal oxide clusters: polyhedral cages of (V2O5)n(-) (n = 2-4) and (M2O5(2)(-) (M = Nb, Ta). , 2007, Journal of the American Chemical Society.

[159]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[160]  M. Kappes,et al.  Experimental structure determination of silver cluster ions (Ag(n) +, 19 < or = n < or = 79). , 2006, The Journal of chemical physics.

[161]  Herman van Bekkum,et al.  Introduction to zeolite science and practice , 2001 .

[162]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[163]  Hongjun Gao,et al.  Formation of one-dimensional crystalline silica on a metal substrate , 2006 .

[164]  Dongxu Tian,et al.  Structural evolution of Agnv(v=±1,0;n=3–14) clusters using genetic algorithm and density functional theory method , 2008 .

[165]  H. Winter,et al.  Evidence for 2D-network structure of monolayer silica film on Mo(112). , 2009, Physical review letters.

[166]  Georg Kresse,et al.  Structure of the Ultrathin Aluminum Oxide Film on NiAl(110) , 2005, Science.

[167]  F. Sedona,et al.  Structure of a TiOx zigzag-like monolayer on Pt(111) , 2007 .

[168]  D. Goodman,et al.  Structure of thin SiO2 films grown on Mo(112) , 2004 .

[169]  M. Kappes,et al.  Boron cluster cations: transition from planar to cylindrical structures. , 2007, Angewandte Chemie.

[170]  K. Asmis,et al.  Isomorphous substitution in bimetallic oxide clusters. , 2006, Physical review letters.

[171]  E. Tyo,et al.  Cluster reactivity experiments: Employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions , 2008, Proceedings of the National Academy of Sciences.

[172]  C. J. Weststrate,et al.  Lack of surface oxide layers and facile bulk oxide formation on Pd(110) , 2009 .

[173]  A. Stierle,et al.  X-ray Diffraction Study of the Ultrathin Al2O3 Layer on NiAl(110) , 2004, Science.

[174]  R. Fletcher Practical Methods of Optimization , 1988 .

[175]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[176]  G. Kresse,et al.  First-principles calculations for VxOy grown on Pd(111) , 2001 .

[177]  Lai‐Sheng Wang,et al.  Photoelectron Spectroscopy of Free Polyoxoanions Mo6O192- and W6O192- in the Gas Phase , 2004 .

[178]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[179]  G. Kresse,et al.  Surface oxides on Pd(111) : STM and density functional calculations , 2007 .

[180]  D. Goodman,et al.  Synthesis of well-ordered ultra-thin titanium oxide films on Mo(112) , 2005 .

[181]  J. Jortner Cluster size effects , 1992 .

[182]  J. Gustafson,et al.  Structure and catalytic reactivity of Rh oxides , 2009 .

[183]  J. Stickney,et al.  Thin Films: Preparation, Characterization, Applications , 2002 .

[184]  D. Goodman,et al.  Oxygen-induced p(1×3)-O reconstruction on Mo(112): a precursor to the epitaxial formation of MoO2(100) , 2002 .

[185]  M. Sierka,et al.  Synthesis and structure of ultrathin aluminosilicate films. , 2006, Angewandte Chemie.

[186]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[187]  Numerical solutions of the Schrödinger equation directly or perturbatively by a genetic algorithm: test cases , 1998 .

[188]  Bernd Hartke,et al.  Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low‐order scaling with cluster size , 1999 .

[189]  Lai‐Sheng Wang,et al.  Experimental and theoretical characterization of superoxide complexes [W2O6(O2-)] and [W3O9(O2-)]: models for the interaction of O2 with reduced W Sites on tungsten oxide surfaces. , 2006, Angewandte Chemie.

[190]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[191]  M. Bäumer,et al.  Catalysis and surface science: What do we learn from studies of oxide-supported cluster model systems? , 2000 .

[192]  W. Wiegmann,et al.  Quantum States of Confined Carriers in Very Thin AlxGa1-x As-GaAs-AlxGa1-xAs Heterostructures , 1974 .

[193]  J. Haber Molybdenum Compounds in Heterogeneous Catalysis , 1994 .

[194]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[195]  T. Schroeder EPITAXIAL GROWTH OF SiO2 ON Mo(112) , 2000 .

[196]  Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres , 1992 .

[197]  J. Gustafson,et al.  Self-limited growth of a thin oxide layer on Rh(111). , 2004, Physical review letters.

[198]  K. Asmis,et al.  Polyhedral vanadium oxide cages: infrared spectra of cluster anions and size-induced d electron localization. , 2005, Angewandte Chemie.

[199]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[200]  Menezes,et al.  Optical response of small niobium clusters. , 1992, Physical review letters.

[201]  M. Scheffler,et al.  Unusual chemisorption geometry of Na on Al(111) , 1991 .

[202]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[203]  G. Helden,et al.  Mass selective infrared spectroscopy using a free electron laser , 1996 .

[204]  G. Kresse,et al.  Novel interface-mediated metastable oxide phases: vanadium oxides on Pd(111). , 2001, Physical review letters.

[205]  C. V. Ciobanu,et al.  Finding the reconstructions of semiconductor surfaces via a genetic algorithm [rapid communication] , 2004 .

[206]  William L. Hase,et al.  Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) α-Aluminum Oxide Surface , 1998 .

[207]  Scheffler,et al.  Mechanisms of defect pairing in semiconductors: A study for chalcogens in silicon. , 1987, Physical review letters.

[208]  W. H. Weinberg,et al.  Low-energy electron diffraction : experiment, theory and surface structure determination , 1986 .

[209]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[210]  M Schmid,et al.  Two-dimensional oxide on Pd(111). , 2002, Physical review letters.

[211]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[212]  D. P. Woodruff Atomic clusters from gas phase to deposited , 2007 .

[213]  P. Jena,et al.  Clusters: a bridge between disciplines. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[214]  D. Bohme Gaseous ions and chemical mass spectrometry , 2008 .

[215]  Hongjun Gao,et al.  Atomic structure of a thin silica film on a Mo(112) substrate: A combined experimental and theoretical study , 2006 .

[216]  Michael A. Duncan,et al.  Structure determination of gas phase aluminum oxide clusters , 2003 .